
Rate Distortion Function in the Spin Glass State:
a Toy Model

Tatsuto Murayama and Masato Okada
Laboratory for Mathematical Neuroscience

RIKEN Brain Science Institute
Saitama, 351-0198, JAPAN

{murayama,okada}@brain.riken.go.jp

Abstract

We applied statistical mechanics to an inverse problem of linear mapping
to investigate the physics of optimal lossy compressions. We used the
replica symmetry breaking technique with a toy model to demonstrate
Shannon’s result. The rate distortion function, which is widely known
as the theoretical limit of the compression with a fidelity criterion, is
derived. Numerical study shows that sparse constructions of the model
provide suboptimal compressions.

1 Introduction

Many information-science studies are very similar to those of statistical physics. Statistical
physics and information science may have been expected to be directed towards common
objectives since Shannon formulated an information theory based on the concept of en-
tropy. However, envisaging how this actually happened would have been difficult; that the
physics of disordered systems, and spin glass theory in particular, at its maturity naturally
includes some important aspects of information sciences, thus reuniting the two disciplines.
This cross-disciplinary field can thus be expected to develop much further beyond current
perspectives in the future [1].

The areas where these relations are particularly strong are Shannon’s coding theory [2] and
classical spin systems with quenched disorder, which is the replica theory of disordered
statistical systems [3]. Triggered by the work of Sourlas [4], these links have recently
been examined in the area of matrix-based error corrections [5, 6], network-based com-
pressions [7], and turbo decoding [8]. Recent results of these topics are mostly based on
the replica technique. Without exception, their basic characteristics (such as channel ca-
pacity, entropy rate, or achievable rate region) are only captured by the concept of a phase
transition with a first-order jump between the optimal and the other solutions arising in the
scheme.

However, the research in the cross-disciplinary field so far can be categorized as a so-called
‘zero-distortion’ decoding scheme in terms of information theory: the system requires per-
fect reproduction of the input alphabets [2]. Here, the same spin glass techniques should
be useful to describe the physics of systems with a fidelity criterion; i.e., a certain degree
of information distortion is assumed when reproducing the alphabets. This framework is



called the rate distortion theory [9, 10]. Though processing information requires regard-
ing the concept of distortions practically, where input alphabets are mostly represented by
continuous variables, statistical physics only employs a few approaches [11, 12].

In this paper, we introduce a prototype that is suitable for cross-disciplinary study. We
analyze how information distortion can be described by the concepts of statistical physics.
More specifically, we study the inverse problem of a Sourlas-type decoding problem by us-
ing the framework of replica symmetry breaking (RSB) of diluted disordered systems [13].
According to our analysis, this simple model provides an optimal compression scheme
for an arbitrary fidelity-criterion degree, though the encoding procedure remains an NP-
complete problem without any practical encoders.

The paper is organized as follows. In Section 2, we briefly review the concept of the
rate distortion theory as well as the main results related to our purpose. In Section 3, we
introduce a toy model. In Section 4, we obtain consistent results with information theory.
Conclusions are given in the last section. Detailed derivations will be reported elsewhere.

2 Review: Rate Distortion Theory

We briefly recall the definitions of the concepts of the rate distortion theory and state the
simplest version of the main result at the end of this section. Let J be a discrete ran-
dom variable with alphabet J . Assume that we have a source that produces a sequence
J1, J2, · · · , JM , where each symbol is randomly drawn from a distribution. We will as-
sume that the alphabet is finit. Throughout this paper we use vector notation to represent
sequences for convenience of explanation: J = (J1, J2, · · · , JM )T ∈ J M . Here, the
encoder describes the source sequence J ∈ J M by a codeword ξ = f(J) ∈ XN . The
decoder represents J by an estimate Ĵ = g(ξ) ∈ Ĵ M , as illustrated in Figure 1. Note that
M represents the length of a source sequence, while N represents the length of a codeword.
Here, the rate is defined by R = N/M . Note that the relation N < M always holds when
a compression is considered; therefore, R < 1 also holds.

Definition 2.1 A distortion function is a mapping

d : J × Ĵ → R+ (1)

from the set of source alphabet-reproduction alphabet pairs into the set of non-negative
real numbers.

Intuitively, the distortion d(J, Ĵ) is a measure of the cost of representing the symbol J by
the symbol Ĵ . This definition is quite general. In most cases, however, the reproduction
alphabet Ĵ is the same as the source alphabet J . Hereafter, we set Ĵ = J and the
following distortion measure is adopted as the fidelity criterion:

Definition 2.2 The Hamming distortion is given by

d(J, Ĵ) =

{

0 if J = Ĵ

1 if J 6= Ĵ
, (2)

,

which results in a probable error distortion, since the relation E[d(J, Ĵ)] = P[J 6= Ĵ ]
holds, where E[·] represents the expectation and P[·] the probability of its argument. The
distortion measure is so far defined on a symbol-by-symbol basis. We extend the definition
to sequences:



Definition 2.3 The distortion between sequences J , Ĵ ∈ J M is defined by

d(J , Ĵ) =
1

M

M
∑

j=1

d(Jj , Ĵj) . (3)

Therefore, the distortion for a sequence is the average distortion per symbol of the elements
of the sequence.

Definition 2.4 The distortion associated with the code is defined as

D = E[d(J , Ĵ)] , (4)

where the expectation is with respect to the probability distribution on J .

A rate distortion pair (R,D) should be achiebable if a sequence of rate distortion codes
(f, g) exist with E[d(J , Ĵ)] ≤ D in the limit M → ∞. Moreover, the closure of the set
of achievable rate distortion pairs is called the rate distortion region for a source. Finally,
we can define a function to describe the boundary:

Definition 2.5 The rate distortion function R(D) is the infimum of rates R, so that (R,D)
is in the rate distortion region of the source for a given distortion D.

As in [7], we restrict ourselves to a binary source J with a Hamming distortion measure
for simplicity. We assume that binary alphabets are drawn randomly, i.e., the source is
not biased to rule out the possiblity of compression due to redundancy. We now find the
description rate R(D) required to describe the source with an expected proportion of errors
less than or equal to D. In this simplified case, according to Shannon, the boundary can be
written as follows.

Theorem 2.1 The rate distortion function for a binary source with Hamming distortion is
given by

R(D) =

{

1 − H(D) 0 ≤ D ≤ 1
2

0 1
2 < D

, (5)

where H(·) represents the binary entropy function.

J −→ f

encoder

−→ ξ −→ g

decoder

−→ Ĵ

Figure 1: Rate distortion encoder and decoder

3 General Scenario

In this section, we introduce a toy model for lossy compression. We use the inverse problem
of Sourlas-type decoding to realize the optimal encoding scheme [4]. As in the previous
section, we assume that binary alphabets are drawn randomly from a non-biased source
and that the Hamming distortion measure is selected for the fidelity criterion.

We take the Boolean representation of the binary alphabet J , i.e., we set J = {0, 1}.
We also set X = {0, 1} to represent the codewords throughout the rest of this paper.



Let J be an M -bit source sequence, ξ an N -bit codeword, and Ĵ an M -bit reproduction
sequence. Here, the encoding problem can be written as follows. Given a distortion D and
a randomly-constructed Boolean matrix A of dimensionality M × N , we find the N -bit
codeword sequence ξ, which satisfies

Ĵ = Aξ (mod 2) , (6)

where the fidelity criterion

D = E[d(J , Ĵ)] (7)

holds, according to every M -bit source sequence J . Note that we applied modulo 2 arith-
metics for the additive operations in (6). In our framework, decoding will just be a linear
mapping Ĵ = Aξ, while encoding remains a NP-complete problem.

Kabashima and Saad recently expanded on the work of Sourlas, which focused on the zero-
rate limit, to an arbitrary-rate case [5]. We follow their construction of the matrix A, so we
can treat practical cases. Let the Boolean matrix A be characterized by K ones per row
and C per column. The finite, and usually small, numbers K and C define a particular
code. The rate of our codes can be set to an arbitrary value by selecting the combination
of K and C. We also use K and C as control parameters to define the rate R = K/C. If
the value of K is small, i.e., the relation K � N holds, the Boolean matrix A results in
a very sparse matrix. By contrast, when we consider densely constructed cases, K must
be extensively big and have a value of O(N). We can also assume that K is not O(1) but
K � N holds. The codes within any parameter region, including the sparsely-constructed
cases, will result in optimal codes as we will conclude in the following section. This is one
new finding of our analysis using statistical physics.

4 Physics of the model: One-step RSB Scheme

The similarity between codes of this type and Ising spin systems was first pointed out by
Sourlas, who formulated the mapping of a code onto an Ising spin system Hamiltonian
in the context of error correction [4]. To facilitate the current investigation, we first map
the problem to that of an Ising model with finite connectivity following Sourlasfmethod.
We use the Ising representation {1,−1} of the alphabet J and X rather than the Boolean
one {0, 1}; the elements of the source J and the codeword sequences ξ are rewritten in
Ising values by mapping only, and the reproduction sequence Ĵ is generated by taking
products of the relevant binary codeword sequence elements in the Ising representation
Ĵ〈i1,i2,··· ,iK〉 = ξi1ξi2 · · · ξiK

, where the indices i1, i2, · · · , iK correspond to the ones per
row A, producing a Ising version of Ĵ . Note that the additive operation in the Boolean
representation is translated into the multiplication in the Ising one. Hereafter, we set
Jj , Ĵj , ξi = ±1 while we do not change the notations for simplicity. As we use statistical-
mechanics techniques, we consider the source and codeword-sequence dimensionality (M
and N , respectively) to be infinite, keeping the rate R = N/M finite. To explore the
system’s capabilities, we examine the Hamiltonian:

H(S) = −
∑

〈i1,··· ,iK〉

A〈i1,··· ,iK〉J〈i1,··· ,iK〉Si1 · · ·SiK
, (8)

where we have introduced the dynamical variable Si to find the most suitable Ising code-
word sequence ξ to provide the reproduction sequence Ĵ in the decoding stage. Elements
of the sparse connectivity tensor A〈i1,··· ,iK〉 take the value one if the corresponding indices
of codeword bits are chosen (i.e., if all corresponding indices of the matrix A are one) and
zero otherwise; C ones per i index represent the system’s degree of connectivity.



For calculating the partition function Z(A,J) = Tr{S} exp[−βH(S)], we apply the
replica method following the calculation of Kabashima and Saad [5]. To calculate replica-
free energy, we have to calculate the annealed average of the n-th power of the partition
function by preparing n replicas. Here we introduce the inverse temperature β, which can
be interpreted as a measure of the system’s sensitivity to distortions. As we see in the fol-
lowing calculation, the optimal value of β is naturally determined when the consistency of
the replica symmetry breaking scheme is considered [13, 3]. We use integral representa-
tions of the Dirac δ function to enforce the restriction, C bonds per index, on A [14]:

δ





∑

〈i2,i3,··· ,iK〉

A〈i,i2,··· ,iK〉 − C



 =

∮ 2π

0

dZ

2π
Z−(C+1)Z

∑

〈i2,i3,··· ,iK〉 A〈i,i2,··· ,iK〉 , (9)

giving rise to a set of order parameters

qα,β,··· ,γ =
1

N

N
∑

i=1

ZiS
α
i Sβ

i · · ·Sγ
i , (10)

where α, β, · · · , γ represent replica indices, and the average over J is taken with respect
to the probability distribution:

P[J〈i1,i2,··· ,iK〉] =
1

2
δ(J〈i1,i2,··· ,iK〉 − 1) +

1

2
δ(J〈i1,i2,··· ,iK〉 + 1) (11)

as we consider the non-biased source sequences for simplicity. Assuming the replica sym-
metry, we use a different representation for the order parameters and the related conjugate
variables [14]:

qα,β,··· ,γ = q

∫

dx π(x) tanhl(βx) , (12)

q̂α,β,··· ,γ = q̂

∫

dx π̂(x̂) tanhl(βx̂) , (13)

where q = [(K − 1)!NC]1/K and q̂ = [(K − 1)!]−1/K [NC](K−1)/K are normalization
constants, and π(x) and π̂(x̂) represent probability distributions related to the integration
variables. Here l denotes the number of related replica indices. Throughout this paper,
integrals with unspecified limits denote integrals over the range of (−∞,+∞). We then
obtain an expression for the free energy per source bit expressed in terms of the probability
distributions π(x) and π̂(x̂):

−βf =
1

M
〈〈lnZ(A,J)〉〉

= ln cosh β

+

∫ K
∏

l=1

dxl π(xl)

〈

ln

(

1 + tanh βJ

K
∏

l=1

tanh βxl

)〉

J

− K

∫

dx π(x)

∫

dx̂ π̂(x̂) ln(1 + tanh βx tanh βx̂)

+
C

K

∫ C
∏

l=1

dx̂l π̂(x̂l) ln

[

Tr
S

C
∏

l=1

(1 + S tanh βx̂l)

]

,

(14)

where 〈〈· · · 〉〉 denotes the average over quenched randomness of A and J . The saddle
point equations with respect to probability distributions provide a set of relations between



π(x) and π̂(x̂):

π(x) =

∫

[

C−1
∏

l=1

dx̂l π̂(x̂l)

]

δ

(

x −

C−1
∑

l=1

x̂l

)

,

π̂(x̂) =

∫

[

C−1
∏

l=1

dxl π(xl)

]〈

δ

[

x̂ −
1

β
tanh−1

(

tanh βJ

K−1
∏

l=1

tanh βxl

)]〉

J

.

(15)

By using the result obtained for the free energy, we can easily perform further straight-
forward calculations to find all the other observable thermodynamical quantities, including
internal energy:

e =
1

M

〈〈

TrSH(S)e−βH(S)
〉〉

= −
1

M

∂

∂β
〈〈lnZ(A,J)〉〉 , (16)

which records reproduction errors. Therefore, in terms of the considered replica symmetric
ansatz, a complete solution of the problem seems to be easily obtainable; unfortunately, it
is not.

This set of equations (15) may be solved numerically for general β, K, and C. How-
ever, there exists an analytical solution of this equations. We first consider this case. Two
dominant solutions emerge that correspond to the paramagnetic and the spin glass phases.
The paramagnetic solution, which is also valid for general β, K, and C, is in the form of
π(x) = δ(x) and π̂ = δ(x̂); it has the lowest possible free energy per bit fPARA = −1,
although its entropy sPARA = (R−1) ln 2 is positive only for R ≥ 1. It means that the true
solution must be somewhere beyond the replica symmetric ansatz. As a first step, which is
called the one-step replica symmetry breaking (RSB), n replicas are usually divided into
n/m groups, each containing m replicas. Pathological aspects due to the replica symmetry
may be avoided making use of the newly-defined freedom m. Actually, this one-step RSB
scheme is considered to provide the exact solutions when the random energy model limit
is considered [15], while our analysis is not restricted to this case.

The spin glass solution can be calculated for both the replica symmetric and the one-step
RSB ansatz. The former reduces to the paramagnetic solution (fRS = fPARA), which is
unphysical for R < 1, while the latter yields π1RSB(x) = δ(x), π̂1RSB(x̂) = δ(x̂) with
m = βg(R)/β and βg obtained from the root of the equation enforcing the non-negative
replica symmetric entropy

sRS = ln coshβg − βg tanh βg + R ln 2 = 0 , (17)

with a free energy

f1RSB = −
1

βg
ln cosh βg −

R

βg
ln 2 . (18)

Since the target bit of the estimation in this model is J〈i1,··· ,iK〉 and its estimator the product
Si1 · · ·SiK

, a performance measure for the information corruption could be the per-bond
energy e. According to the one-step RSB framework, the lowest free energy can be calcu-
lated from the probability distributions π1RSB(x) and π̂1RSB(x̂) satisfying the saddle point
equation (15) at the characteristic inverse temperature βg , when the replica symmetric en-
tropy sRS disappears. Therefore, f1RSB equals e1RSB. Let the Hamming distortion be our
fidelity criterion. The distortion D associated with this code is given by the fraction of the
free energies that arise in the spin glass phase:

D =
f1RSB − fRS

2|fRS |
=

1 − tanh βg

2
. (19)



Here, we substitute the spin glass solutions into the expression, making use of the fact that
the replica symmetric entropy sRS disappears at a consistent βg , which is determined by
(17). Using (17) and (19), simple algebra gives the relation between the rate R = N/M
and the distortion D in the form

R = 1 − H(D) ,

which coincides with the rate distortion function retrieving Theorem 2.1. Surprisingly, we
do not observe any first-order jumps between analytical solutions. Recently, we have seen
that many approaches to the family of codes, characterized by the linear encoding opera-
tions, result in a quite different picture: the optimal boundary is constructed in the random
energy model limit and is well captured by the concept of a first-order jump. Our analysis
of this model, viewed as a kind of inverse problem, provides an exception. Many optimal
conditions in textbook information theory may be well described without the concept of a
first-order phase transitions from a view point of statistical physics.

We will now investigate the possiblity of the other solutions satisfying (15) in the case
of finite K and C. Since the saddle point equations (15) appear difficult for analytical
arguments, we resort to numerical evaluations representing the probability distributions
π1RSB(x) and π̂1RSB(x̂) by up to 105 bin models and carrying out the integrations by
using Monte Carlo methods. Note that the characteristic inverse temperature βg is also
evaluated numerically by using (17). We set K = 2 and selected various values of C to
demonstrate the performance of stable solutions. The numerical results obtained by the
one-step RSB senario show suboptimal properties [Figure 2]. This strongly implies that
the analytical solution is not the only stable solution. This conjecture might be verified
elsewhere, carrying out large scale simulations.

5 Conclusions

Two points should be noted. Firstly, we found that the consistency between the rate dis-
tortion theory and the Parisi one-step RSB scheme. Secondly, we conjectured that the
analytical solution, which is consistent with the Shannon’s result, is not the only stable
solution for some situations. We are currently working on the verification.
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