
Topographic Map Formation by Silicon 
Growth Cones 

Brian Taba and Kwabena Boahen 
Department of Bioengineering 

University of Pennsylvania 
Philadelphia, P A 19104 

{blaba, kwabena}@neuroengineering.upenn.edu 

Abstract 

We describe a self-configuring neuromorphic chip that uses a 
model of activity-dependent axon remodeling to automatically wire 
topographic maps based solely on input correlations. Axons are 
guided by growth cones, which are modeled in analog VLSI for the 
first time. Growth cones migrate up neurotropin gradients, which 
are represented by charge diffusing in transistor channels. Virtual 
axons move by rerouting address-events. We refined an initially 
gross topographic projection by simulating retinal wave input. 

1 Neuromorphic Systems 

Neuromorphic engineers are attempting to match the computational efficiency of 
biological systems by morphing neurocircuitry into silicon circuits [1]. One of the 
most detailed implementations to date is the silicon retina described in [2] . This 
chip comprises thirteen different cell types, each of which must be individually and 
painstakingly wired. While this circuit-level approach has been very successful in 
sensory systems, it is less helpful when modeling largely unelucidated and 
exceedingly plastic higher processing centers in cortex. 

Instead of an explicit blueprint for every cortical area, what is needed is a 
developmental rule that can wire complex circuits from minimal specifications. One 
candidate is the famous "cells that fire together wire together" rule, which 
strengthens excitatory connections between coactive presynaptic and postsynaptic 
cells. We implemented a self-rewiring scheme of this type in silicon, taking our cue 
from axon remodeling during development. 

2 Growth Cones 

During development, the brain wires axons into a myriad of topographic projections 
between regions. Axonal projections initially organize independent of neural 
activity, establishing a coarse spatial order based on gradients of substrate-bound 
molecules laid down by local gene expression. These gross topographic projections 
are refined and maintained by subsequent neuronal spike activity, and can reroute 
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Figure 1: A. Postsynaptic activity is transmitted to the next layer (up arrows) and 
releases neurotropin into the extracellular medium (down arrows). B. Presynaptic 
activity excites postsynaptic dendrites (up arrows) and triggers neurotropin uptake 
by active growth cones (down arrows). Each growth cone samples the neurotropin 
concentration at several spatial locations, measuring the gradient across the axon 
terminal. Growth cones move toward higher neurotropin concentrations. C. Axons 
that fire at the same time migrate to the same place. 

themselves if their signal source changes. In such cases, axons abandon obsolete 
territory and invade more promising targets [3]. 

An axon grows by adding membrane and microtubule segments to its distal tip, an 
amoeboid body called a growth cone. Growth cones extend and retract fingers of 
cytoplasm called filopodia, which are sensitive to local levels of guidance chemicals 
in the surrounding medium. Candidate guidance chemicals include BDNF and NO, 
whose release can be triggered by action potentials in the target neuron [4]. 

Our learning rule is based on an activity-derived diffusive chemical that guides 
growth cone migration. In our model, this neurotropin is released by spiking 
neurons and diffuses in the extracellular medium until scavenged by glia or bound 
by growth cones (Figure lA). An active growth cone compares amounts of 
neurotropin bound to each of its filopodia in order to measure the local gradient 
(Figure IB). The growth cone then moves up the gradient, dragging the axon behind 
it. Since neurotropin is released by postsynaptic activity and axon migration is 
driven by presynaptic activity, this rule translates temporal coincidence into spatial 
coincidence (Figure 1 C). 

For topographic map formation, this migration rule requires temporal correlations in 
the presynaptic plane to reflect neighborhood relations. We supply such correlations 
by simulating retinal waves, spontaneous bursts of action potentials that sweep 
across the ganglion cell layer in the developing mammalian retina. Retinal waves 
start at random locations and spread over a limited domain before fading away, 
eventually tiling the entire retinal plane [5]. Axons participating in the same retinal 
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Figure 2: A. Chip block diagram. Axon terminal (AT) and neuron (N) circuits are 
arrayed hexagonally, surrounded by a continuous charge-diffusing lattice. An active 
axon terminal (AT x,y) excites the three adjacent neurons and its growth cone 
samples neurotropin from four adjacent lattice nodes. The growth cone sends the 
measured gradient direction off-chip (VGCx,y)' An active postsynaptic neuron 
(Nx,y) releases neurotropin into the six surrounding lattice nodes and sends its spike 
off-chip. B. System block diagram. Presynaptic neurons send spikes to the lookup 
table (LUT), which routes them to axon terminal coordinates (AT) on-chip. Chip 
output filters through a microcontroller (f.lC) that translates gradient measurements 
(VGC) into LUT updates (ilAT). Postsynaptic activity (N) may be returned to the 
LUT as recurrent excitation and also passed on to the next stage of the system. 

wave migrate to the same postsynaptic neighborhood, since neurotropin 
concentration is maximized when every cell that fires at the same time releases 
neurotropin at the same place. 

To prevent all of the axons from collapsing onto a single postsynaptic target, we 
enforce a strictly constant synaptic density. We have a fixed number of synaptic 
sites, each of which can be occupied by one and only one presynaptic afferent. An 
axon terminal moves from one synaptic site to another by swapping places with the 
axon already occupying the desired location. Learning occurs only in the point-to­
point wiring diagram; synaptic weights are identical and unchanging. 

3 System Architecture 

We have fabricated and tested a first-generation neurotropin chip, Neurotrope 1, that 
implements retrograde transmission of a diffusive factor from postsynaptic neurons 
to presynaptic afferents (Figure 2A). The 11.5 mm2 chip was fabricated through 
MOSIS using the TSMC 0.35f.lm process, and includes a 40 x 20 array of growth 
cones interleaved with a 20 x 20 array of neurons. The chip receives and transmits 
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Figure 3: Neurotropin circuit diagram. Postsynaptic activity gates neurotropin 
release (left box) and presynaptic activity gates neurotropin uptake (right box). 

spike coordinates encoded as address-events, permitting ready interface with other 
spike-based chips that obey this standard [6]. Virtual wiring [7] is realized with a 
look-up table (LUT) stored in a separate content-addressable memory (CAM) that is 
controlled by an Ubi com SX52 microcontroller (Figure 2B). 

The core of the chip consists of an array of axon terminals that target a second array 
of neurons, all surrounded by a monolithic pFET channel laid out as a hexagonal 
lattice, representing a two-dimensional extracellular medium. An activated axon 
terminal generates postsynaptic potentials in all the fixed-radius dendritic arbors 
that span its location, as modeled by a diffusor network [8]. Once the membrane 
potential crosses a threshold, the neuron fires, transmitting its coordinates off-chip 
and simultaneously releasing neurotropin, represented as charge spreading within 
the lattice. N eurotropin diffuses spatially until removed by either an activity­
independent leak current or an active axon terminal. 

An axon terminal senses the local extracellular neurotropin gradient by draining 
charge from its own node on the hexagonal lattice and from the three immediately 
adjacent nodes. Charge from the four locations is integrated on independent 
capacitors, which race to cross threshold first. The winner of this latency 
competition transmits a set of coordinates that uniquely identify the location and 
direction of the measured gradient. We use the neuron circuit described in [9] to 
integrate neurotropin as well as dendritic potentials. 

Coordinates transmitted off-chip thus fall into two categories: neuron spikes that are 
routed through the LUT, and gradient directions that are used to update entries in 
the LUT. An axon migrates simply by looking up the entry in the table 
corresponding to the site it wants to occupy and swapping that address with that of 
its current location. Subsequent spikes are routed to the new coordinates. Thus, 
although the physical axon terminal circuits are immobilized in silicon, the virtual 
axons are free to move within the postsynaptic plane. 

3.1 Neurotropin circuit 

Neurotropin in the extracellular medium is represented by charge in the hexagonal 
charge-diffusing lattice Ml (Figure 3). VCDL sets the maximum amount of charge 
MI can hold. The total charge in Ml is determined by circuits that implement 
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Figure 4: Latency competition circuit diagram. A growth cone integrates 
neurotropin samples from its own location (right box) and the three neighboring 
locations (left three boxes). The first location to accumulate a threshold of charge 
resets its three competitors and signals its identity off-chip. 

activity-dependent neurotropin release and uptake. In addition, MIl and M12 
provide a path for activity-independent release and uptake. 

Postsynaptic activity triggers neurotropin release, as implemented by the circuit in 
the left box of Figure 3. Spikes from any of the three neighboring postsynaptic 
neurons pull Cspost to ground, opening M7 and discharging C/post through M4 and 
M5. As C/post falls, M6 opens, establishing a transient path from Vdd to M1 that 
injects charge into the hexagonal lattice. Upon termination of the postsynaptic 
spike, Cspost and C/post are recharged by decay currents through M2 and M3. Vppost 

and V/postout are chosen such that Cspost relaxes faster than C/post. permitting C/post to 
integrate several postsynaptic spikes and facilitate charge injection if spikes arrive 
in a burst rather than singly. V/postin determines the contribution of an individual 
spike to the facilitation capacitor C/post . 

Presynaptic activity triggers neurotropin uptake, as implemented by the circuit in 
the right box of Figure 3. Charge is removed from the hexagonal lattice by a 
facilitation circuit similar to that used for postsynaptic release. A presynaptic spike 
targeted to the axon terminal pulls C spre to ground through M24. C spre. in turn, drains 
charge from C/pre through M21 and M22. C/pre removes charge from the hexagonal 
lattice through M14, up to a limit set by M13, which prevents the hexagonal lattice 
from being completely drained in order to avoid charge trapping. Current from M14 
is divided between five possible sinks. Depending on presynaptic activation, up to 
four axon terminals may sample a fraction of this current through M 15-18; the 
remainder is shunted to ground through M 19 in order to prevent a single presynaptic 
event from exerting undue influence on gradient measurements. The current 
sampled by the axon terminal at its own site is gated by ~sampleo, which is pulled 
low by a presynaptic spike through M26 and subsequently recovers through M25. 
Identical circuits in the other axon terminals generate signals ~sample], ~sample2' 
and ~sample3. Sample currents la, h hand 13 are routed to latency competition 
circuits in the four adjacent axon terminals. 



Figure 5: Retinal stimulus and cortical attractor. A. Randomly centered patches of 
active retinal cells (left) excite cortical targets (right). B. Density plot of a single 
mobile growth cone initialized in a static topographic projection. Histograms bin 
column (0'=3.27) and row (0'=3.79) coordinates observed (n=800). 

3.2 Latency competition circuit 

Each axon terminal measures the local neurotropin gradient by sampling a fraction 
of the neurotropin present at its own site, location 0, and the three immediately 
adjacent nodes on the hexagonal lattice, locations 1-3. Charge drained from the 
hexagonal lattice at these four sites is integrated on a separate capacitor for each 
location. The first capacitor to reach the threshold voltage wins the race, resetting 
itself and all of its competitors and signaling its victory off-chip. 

In the circuit that samples neurotropin from location 1 (left box of Figure 4), charge 
pulses 1J arrive through diode Ml and accumulate on capacitor CJ in an integrate­
and-fire circuit described in [9]. Upon crossing threshold this circuit transmits a 
swap request ~sol, resets its three competitors by using M6 to pull the shared reset 
line GRST high, and disables M4 to prevent GRST from using M3 to reset CJ • The 
swap request ~sol remains low until acknowledged by sil, which discharges CJ 

through M2. During the time that ~sol is low, the other three capacitors are shunted 
to ground by GRST, preventing late arrivals from corrupting the declared gradient 
measurement before it has been transmitted off-chip. C] being reset releases GRST 
to relax to ground through M24 with a decay time determined by Vgrs t• 

C] is also reset if the neighboring axon terminal initiates a swap. GRSTil is pulled 
low if either the axon terminal at location 1 decides to move to location 0 or the 
axon terminal at location 0 decides to move to location 1. The accumulated 
neurotropin samples at both locations become obsolete after the exchange, and are 
therefore discarded when GRST is pulled high through MS. Identical circuits sample 
neurotropin from locations 2 and 3 (center two boxes of Figure 4). 

If Co (right box of Figure 4) wins the latency competition, the axon terminal decides 
that its current location is optimal and therefore no action is required. In this case, 
no off-chip communication occurs and Co immediately resets itself and its three 
rivals. Thus, the location 0 circuit is identical to those of locations 1-3 except that 
the inverted spike is fed directly back to the reset transistor M20 instead of to a 
communication circuit. Also, there is no GRSTiO transistor since there is no swap 
partner. 

4 Results 

We drove the chip with a sequence of randomly centered patches of presynaptic 
activity meant to simulate retinal waves. Each patch consisted of 19 adjacent 
presynaptic cells: a randomly selected presynaptic cell and its nearest, next-nearest, 
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Figure 6: Topographic map evolution. A. Initial maps. Axon terminals in the 
postsynaptic plane (right) are dyed according to the presynaptic coordinates of their 
cell body (left). Top row: Coarse initial map. Bottom row: Perfect initial map. B. 
Postsynaptic plane after 12000 patch presentations. C. Map error in units of average 
postsynaptic distance between axon terminals of presynaptic neighbors. Top line: 
refinement of coarse initial map; bottom line: relaxation of perfect initial map. 

and third-nearest presynaptic neighbors on a hexagonal grid (Figure 5A). Every 
patch participant generated a burst of 8192 spikes, which were routed to the 
appropriate axon terminal circuit according to the connectivity map stored in the 
CAM. About 100 patches were presented per minute. 

To establish an upper performance bound, we initialized the system with a perfectly 
topographic projection and generated bursts from the same retinal patch, holding all 
growth cones static except for the one projected from the center of the patch, which 
was free to move over the entire cortical plane. Over 800 min, the single mobile 
growth cone wandered within the cortical area of the patch (Figure 5B), suggesting 
that the patch radius limits maximum sustainable topography even in the ideal case. 

To test this limit empirically, we generated an initial connectivity map by starting 
with a perfectly topographic projection and executing a sequence of (N/2)2 swaps 
between a randomly chosen axon terminal and one of its randomly chosen 
postsynaptic neighbors, where N is the number of axon terminals used. We opted for 
a fanout of 1 and full synaptic site occupancy, so 480 presynaptic cells projected 
axons to 480 synaptic sites. (One side of the neuron array exhibited enhanced 
excitability, apparently due to noise on the power rails, so the 320 synaptic sites on 
that side were abandoned.) The perturbed connectivity map preserved a loose global 
bias, representing the formation of a coarse topographic projection from activity­
independent cues. This new initial map was then allowed to evolve according to the 
swap requests generated by the chip. After approximately 12000 patches, a refined 
topographic projection reemerged (Figure 6A,B). 

To investigate the dynamics of topographic refinement, we defined the error for a 
single presynaptic cell to be the average of the postsynaptic distances between the 
axon terminals projected by the cell body and its three immediate presynaptic 
neighbors. A cell in a perfectly topographic projection would therefore have unit 
error. The error drops quickly at the beginning of the evolution as local clumps of 
correlated axon terminals crystallize. Further refinement requires the disassembly of 
locally topographic crystals that happened to nucleate in a globally inconvenient 
location. During this later phase, the error decreases slowly toward an asymptote. 
To evaluate this limit we seeded the system with a perfect projection and let it relax 



to a sustainable degree of topography, which we found to have an error of about 10 
units (Figure 6C). 

5 Discussion 

Our results demonstrate the feasibility of a spike-based neuromorphic learning 
system based on principles of developmental plasticity. This neurotropin chip lends 
itself readily to more ambitious multichip systems incorporating silicon retinae that 
could be used to automatically wire ocular dominance columns and orientation­
selectivity maps when driven by spatiotemporal correlations among neurons of 
different origin (e.g. left eye/right eye) or type (ON/OFF). 

A related model of chemical-driven developmental plasticity posits an activity­
dependent competition for a local sustenance factor, or neurotrophin. Axon weights 
saturate at neurotrophin-rich locations and vanish at neurotrophin-starved locations, 
pruning a dense initial arbor until only the final circuit remains [10]. By contrast, in 
our chemotaxis model, a handful of growth cone-guided wires rearrange themselves 
by moving through locations at which they had no initial presence. These two 
mechanisms could plausibly complement each other: noisy gradient measurements 
establish an initial axonal arbor that can then be pruned to eliminate outliers and 
refine local topography. We can use a similar approach to improve our silicon maps. 
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