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Abstract 

In this paper we show how the generation of documents can be 
thought of as a k-stage Markov process, which leads to a Fisher ker­
nel from which the n-gram and string kernels can be re-constructed. 
The Fisher kernel view gives a more flexible insight into the string 
kernel and suggests how it can be parametrised in a way that re­
flects the statistics of the training corpus. Furthermore, the prob­
abilistic modelling approach suggests extending the Markov pro­
cess to consider sub-sequences of varying length, rather than the 
standard fixed-length approach used in the string kernel. We give 
a procedure for determining which sub-sequences are informative 
features and hence generate a Finite State Machine model, which 
can again be used to obtain a Fisher kernel. By adjusting the 
parametrisation we can also influence the weighting received by the 
features . In this way we are able to obtain a logarithmic weighting 
in a Fisher kernel. Finally, experiments are reported comparing 
the different kernels using the standard Bag of Words kernel as a 
baseline. 

1 Introduction 

Recently the string kernel [6] has been shown to achieve good performance on text­
categorisation tasks . The string kernel projects documents into a feature space 
indexed by all k-tuples of symbols for some fixed k. The strength of the feature 
indexed by the k-tuple U = (Ul, ... , Uk) for a document d is the sum over all 
occurrences of U as a subsequence (not necessarily contiguous) in d, where each 
occurrence is weighted by an exponentially decaying function of its length in d. This 
naturally extends the idea of an n-gram feature space where the only occurrences 
considered are contiguous ones. 

The dimension of the feature space and the non-sparsity of even modestly sized 
documents makes a direct computation of the feature vector for the string kernel 
infeasible. There is, however, a dynamic programming recursion that enables the 
semi-efficient evaluation of the kernel [6]. String kernels are apparently making no 
use of the semantic prior knowledge that the structure of words can give and yet 
they have been used with considerable success. 



The aim of this paper is to place the n-gram and string kernels in the context of 
probabilistic modelling of sequences, showing that they can be viewed as Fisher ker­
nels of a Markov generation process. This immediately suggests ways of introducing 
weightings derived from refining the model based on the training corpus. 

Furthermore, this view also suggests extending consideration to subsequences of 
varying lengths in the same model. This leads to a Finite State Automaton again 
inferred from the data. The refined probabilistic model that this affords gives rise 
to two Fisher kernels depending on the parametrisation that is chosen, if we take 
the Fisher information matrix to be the identity. 

We give experimental evidence suggesting that the new kernels are capturing useful 
properties of the data while overcoming the computational difficulties of the original 
string kernel. 

2 The Fisher VIew of the n-gram and String kernels 

In this section we show how the string kernel can be thought of as a type of Fisher 
kernel [2] where the fixed-length subsequences used as the features in the string 
kernel correspond to the parameters for building the model. In order to give some 
insight into the kernel we first give a Fisher formulat ion of the n-gram kernel (i.e. the 
string kernel which considers only contiguous sequences), and then extend this to 
the full string kernel. 

Let us assume that we have some document d of length s which is a sequence of 
symbols belonging to some alphabet A, i.e. di E A, i = 1, ... , s. We can consider 
document d as being generated by a k-stage Markov process. According to this 
view, for sequences u E A k - l we can define the probability of observing a symbol x 
after a sequence u as PU--+X. Sequences of k symbols therefore index the parameters 
of our model. The probability of a document d being generated by the model is 
therefore 

Idl 

P(d) = II Pd[j-k+!:j-l]--+djl 

j =k 

where we use the notation d[i: j] to denote the sequence didi+!·· ·dj . Now taking 
the derivative of the log-probability: 

o In P( d) o In TIj~k Pd[j -k+!:j -l]--+dj 

opu--+x 

Idl L olnpd[j-k+!:j-l]--+dj = tf(ux,d) 

j=k opu --+ x Pu --+ x 
(1) 

where tf(ux,d) is the term frequency of ux in d, that is the number of times the 
string ux occurs in d. l 

1 Since the pu-+x are not independent it is not possible to take the partial derivative of 
one parameter without affecting others. However we can approximate our approach: 

We introduce an extra character c. For each (n - I)-gram u we assign a sufficiently 
small probability to pu-+c and change the other pu-+x to pu-+x = pu-+x (1 - Pu-+c). We 
now replace each occurence of Pu-+ c in P(d) by 1 - LaEA\{c }Pu-+ a . Thus, since uc never 
occurs in d and Pu-+x ~ pv-+x, the u --+ x Fisher score entry for a document d becomes 

tf( ux, d) 
Pu-+x 

tf( uc, d) ~ tf( ux , d) 
pu-+ c pu-+ x 



The Fisher kernel is subsequently defined to be 

k(d,d') = UJrIUd', 

where Ud is the Fisher score vector with ux-component a~n P( d) and I = Ed[UdUdTJ . 
p u--t x 

It has become traditional to set the matrix I to be the identity when defining a 
Fisher kernel, though this undermines the very satisfying property of the pure defi­
nition that it is independent of the parametrisation. We will follow this same route 
mainly to reduce the complexity ofthe computation. We will, however, subsequently 
consider alternative parameterisations. 

Different choices of the parameters PU-r X give rise to different models and hence 
different kernels . It is perhaps surprising that the n-gram kernel is recovered (up 
to a constant factor) if we set PU-rX = IAI- I for all u E An-l and x E A, that is 
the least informative parameter setting. This follows since the feature vector of a 
document d has entries 

We therefore recover the n-gram kernel as the Fisher kernel of a model which uses 
a uniform distribution for generating documents. 

Before considering how the PU-r X might be chosen non-uniformly we turn our at­
tention briefly to the string kernel. 

We have shown that we can view the n-gram kernel as a Fisher kernel. A little 
more work is needed in order to place the full string kernel (which considers non­
contiguous subsequences) in the same framework. 

First we define an index set Sk-l,q over all (possibly non-contiguous) subsequences 
of length k, which finish in position q, 

Sk-l, q = {i : 1 :'S i l < i2 < ... < i k - l < i k = q}. 

We now define a probability distribution P Sk_1 ,q over Sk - l,q by weighting sequence 
i by )..l(i), where l(i) = i k - i l + 1 is the length of i , and normalising with a 
fixed constant C . This may leave some probability unaccounted for, which can 
be assigned to generating a spurious symbol. We denote by d [iJ the sequence of 
characters di1 di2 ... dik . We now define a text generation model that generates the 
symbol for position q by first selecting a sequence i from Sk-l,q according to the 
fixed distribution P Sk _l ,q and then generates the next symbol based on Pd[i'] -rdik for 
all possible values of dq where i' = (iI, i 2 , ••• , i k - l ) is the vector i without its last 
component. We will refer to this model as the Generalised k-stage Markov model 
with decay fa ctor )... Hence, if we assume that distributions are uniform 

a In P ( d) a In TIj~k I:iESk_l ,j P Sk-l,j (i)Pd[i']-rd ik 

apu-rx f a In I:iEsk_l ,j P Sk -l ,j (i )Pd[i'] -rdik 

j = k aPu-rx 

Idl 

IAI L L P Sk -1 ,j (i )Xux (d[i]) 

Idl 
IAIC- l L L )..l(i)Xux(d [i ]), 

j = k iESk_l ,j 



where Xux is the indicator function for string ux . It follows that the corresponding 
Fisher features will be the weighted sum over all subsequences with decay factor A. 
In other words we recover the string kernel. 

Proposition 1 The Fisher kernel of the generalised k-stage Markov model with 
decay fa ctor A and constant Pu--+x is the string kernel of length k and decay fa ctor 
A. 

3 The Finite State Machine Model 

Viewing the n-gram and string kernels as Fisher kernels of Markov models means 
we can view the different sequences of k - 1 symbols as defining states with the 
next symbol controlling the transition to the next state. We therefore arrive at a 
finite state automaton with states indexed by A k - 1 and transitions labelled by the 
elements of A . Hence, if u E Ak-l the symbol x E A causes the transition to state 
v[2: k], where v = ux. 

One drawback of the string kernel is that the value of k has to be chosen a-priori 
and is then fixed. A more flexible approach would be to consider different length 
subsequences as features, depending on their frequency. Subsequences that occur 
very frequently should be given a low weighting, as they do not contain much infor­
mation in the same way that stop words are often removed from the bag of words 
representation. Rather than downweight such sequences an alternative strategy is 
to extend their length. Hence, the 3-gram com could be very frequent and hence 
not a useful discriminator. By extending it either backwards or forwards we would 
arrive at subsequences that are less frequent and so potentially carry useful infor­
mation. Clearly, extending a sequence will always reduce its frequency since the 
extension could have been made in many distinct ways all of which contribute to 
the frequency of the root n-gram. 

As this derivation follows more naturally from the analysis of the n-gram kernel 
described in Section 2 we will only consider contiguous subsequences also known 
as substrings. We begin by introducing the general Finite State Machine (FSM) 
model and the corresponding Fisher kernel. 

Definition 2 A Finite State Machine model over an alphabet A IS a triple F = 
(~, J,p) where 

1. the non-empty set ~ of states IS a finit e subset of A* 
closed under taking substrings, 

2. the transition function J 
J: ~ x A --+~, 

is defin ed by 

J(u, x) = v [j : l(v)], where v = ux and j = min{j : v [j : l(v)] E ~}, 

if the minimum is defined, otherwise the empty sequence f 

3. for each state u the function p gives a function Pu, which is either a distri­
bution over next symbols Pu (x) or the all one function Pu (x) = 1, for u E ~ 
and x E A. 

Given an FSM model F = (~, J, p) to process a document d we start at the state 
corresponding to the empty sequence f (guaranteed to be in ~ as it is non-empty and 
closed under taking substrings) and follow the transitions dictated by the symbols 



of the document. The probability of a document in the model is the product of the 
values on all of the transitions used: 

Idl 

P.:F (d) = II Pd[id -1](dj ), 

j =l 

where ij = min{i: d[i: j -1] E ~}. Note that requiring that the set ~ to be closed 
under taking substrings ensures that the minimum in the definition of is is always 
defined and that d[ij : j] does indeed define the state at stage j (this follows from 
a simple inductive argument on the sequence of states) . 

If we follow a similar derivation to that given in equation (1) we arrive at the 
corresponding feature for document d and transition on x from u of 

() tf( (u, x), d) 
¢;u,x d = ()' Pu x 

where we use tf( (u, x), d) to denote the frequency of the transition on symbol x 
from a state u with non-unity Pu in document d. 

Hence, given an FSM model we can construct the corresponding Fisher kernel fea­
ture vector by simply processing the document through the FSM and recording the 
counts for each transition. The corresponding feature vector will be sparse relative 
to the dimension of the feature space (the total number of transitions in the FSM) 
since only those transitions actually used will have non-zero entries. Hence, as for 
the bag of words we can create feature vectors by listing the indices of transitions 
used followed by their frequency. The number of non-zero features will be at most 
equal to the number of symbols in the document. 

Consider taking ~ = U7==-Ol Ai with all the distributions Pu uniform for u E A k - 1 

and Pu == 1 for other u. In this case we recover the k-gram model and corresponding 
kernel. 

A problem that we have observed when experiment ing with the n-gram model is 
that if we estimate the frequencies of transitions from the corpus certain transitions 
can become very frequent while others from the same state occur only rarely. In 
such cases the rare states will receive a very high weighting in the Fisher score 
vector. One would like to use the strategy adopted for the idf weighting for the 
bag of words kernel which is often taken to be 

where m is the number of documents and m i the number containing term i. The 
In ensures that the contrast in weighting is controlled. We can obtain this effect in 
the Fisher kernel if we reparametrise the transition probabilities as follows 

Pu(x) = exp(- exp(-tu(x))), 

where tu(x) is the new parameter . With this parametrisation the derivative of the 
In probabilities becomes 

as required. 

a lnpu(x) 
atu(x) 

exp(-tu(x )) = -lnpu(x), 

Although this improves performance the problem of frequent substrings being un­
informative remains . We now consider the idea outlined above of moving to longer 
subsequences in order to ensure that transitions are informative. 



4 Choosing Features 

There is a critical frequency at which the most information is conveyed by a feature. 
If it is ubiquitous as we observed above it gives little or no information for analysing 
documents. If on the other hand it is very infrequent it again will not be useful 
since we are only rarely able to use it. The usefulness is maximal at the threshold 
between these two extremes. Hence, we would like to create states that occur not 
too frequently and not too infrequently. 

A natural way to infer the set of such states is from the training corpus. We select 
all substrings that have occurred at least t t imes in the document corpus, where t 
is a small but statistically visible number. In our experiments we took t = 10. 

Hence, given a corpus S we create the FSM model F t (S) with 

I;t (S) = {u E A* : u occurs at least t times in the corpus S} . 

Taking this definition of I;t (S) we construct the corresponding finite state machine 
model as described in Definition 2. We will refer to the model F t as the frequent 
set FSM at threshold t. 

We now construct the transition probabilities by processing the corpus through 
the F t (S) keeping a tally of the number of times each transition is actually used. 
Typically we initialise the counts to some constant value c and convert the resulting 
counts into probabilities for the model. Hence, if fu ,x is the number of times we 
leave state u processing symbol x, the corresponding probabilities will be 

( ) fu,x + c 
Pu X = lAic + 2::x/EA fu ,x l 

(2) 

Note that we will usually exclude from the count the transitions at the beginning 
of a document d that start from states d[l : j] for some j ?: O. 

The following proposition demonstrates that the model has the desired frequency 
properties for the transitions. We use the notation u ~ v to indicate the transition 
from state u to state v on processing symbol x. 

Proposition 3 Given a corpus S th e FSM model F t (S) satisfies th e following prop­
erty. Ign oring transitions from states indexed by d[l : i] for some document d of th e 

corpus, th e frequency counts f u,x for transitions u ~ v in th e corpus S satisfy 

for all u E I;t (S) . 

Proof. Suppose that for some state u E I;t (S) 

(3) 

This implies that the string u has occurred at least tlAI times at the head of a 
transition not at the beginning of a document. Hence, by the pigeon hole principle 
there is ayE A such that y has occurred t times immediately before one of the 
transitions in the sum of (3). Note that this also implies that yu occurs at least t 
times in the corpus and therefore will be in I;t (S). Consider one of the transitions 
that occurs after yu on some symbol x . This transition will not be of the form 
u ~ v but rather yu ~ v contradicting its inclusion in the sum (3). Hence, the 
proposition holds. • 



Note that the proposition implies that no individual transition can be more frequent 
than the full sum. The proposition also has useful consequences for the maximum 
weighting for any Fisher score entries as the next corollary demonstrates. 

Corollary 4 Given a corpus S if we construct the FSM model F t (S) and compute 
the probabilities by counting transitions ignoring those from states indexed by d[l : i] 
for some document d of the corpus, the probabilities on the transitions will satisfy 

Proof. We substitute the bound given in the proposition into the formula (2). • 

The proposition and corollary demonstrate that the choice of Ft(S) as an FSM 
model has the desirable property that all of the states are meaningfully frequent 
while none of the transitions is too frequent and furthermore the Fisher weighting 
cannot grow too large for any individual transition. 

In the next section we will present experimental results testing the kernels we have 
introduced using the standard and logarithmic weightings. The baseline for the 
experiments will always be the bag of words kernel using the TFIDF weighting 
scheme. It is perhaps worth noting that though the IDF weighting appears similar 
to those described above it makes critical use of the distribution of terms across 
documents, something that is incompatible with the Fisher approach that we have 
adopted. It is therefore very exciting to see the results that we are able to obtain 
using these syntactic features and sub-document level weightings. 

5 Experimental Results 

Our experiments were conducted on the top 10 categories of the standard Reuters-
21578 data set using the "Mod Apte" split . We compared the standard n-gram 
kernel with a Uniform, non-uniform and In weighting scheme, and the variable­
length FSM model described in Section 4 both with uniform weighting and a In 
weighting scheme. As mentioned in Section 4, the parameter t was set to 10. In 
order to keep the comparison fair, the n-gram kernel features were also pruned from 
the feature vector if they occured less than 10 times. For our experiments we used 
5-gram features, which have previously been reported to give the best results [5]. 
The standard bag of words model using the normal tfidf weighting scheme is used 
as a baseline. Once feature vectors had been created they were normalised and 
the SVMlight software package [3] was used with the default parameter settings 
to obtain outputs for the test examples. In order to compare algorithms, we used 
the average performance measure commonly used in Information Retrieval (see e.g. 
[4]). This is the average of precision values obtained when thresholding at each 
positively classified document. If all positive documents in the corpus are ranked 
higher than any negative documents, then the average precision is 100%. Average 
precision incorporates both precision and recall measures and is highly sensitive to 
document ranking, so therefore can be used to obtain a fair comparison between 
methods. The results are shown in Table 1. 

As can bee seen from the table, the variable-length subsequence method performs 
as well as or better than all other methods and achieves a perfect ranking for 
documents in one of the categories. 



Method BoW ngrams FSA 
Weighting TFIDF Uniform 1;: In 1;: Uniform In 1;: 
earn 99.86 99.91 96.4 99.9 99.9 99.9 
acq 99.62 99.61 99.7 99.5 99.7 99.7 
money-fx 80.54 82.43 84.9 83.4 86.5 85.8 
grain 99.69 99.67 99.9 99.4 97.8 97.5 
crude 98.52 98.23 99.9 97.2 100.0 100.0 
trade 95.29 95.53 94.6 95.6 94.6 91.3 
interest 91.61 98.83 96.6 95.4 94.0 88.8 
ship 96.84 99.42 91.7 98.9 92.7 98.4 
wheat 98.52 98.7 97.2 99.3 95.3 98.4 
corn 98.95 98.2 99.3 99.0 97.5 98.1 

Table 1: Average precision results comparing TFIDF, n-gram and FSM features on 
the top 10 categories of the reuters data set. 

6 Discussion 

In this paper we have shown how the string kernel can be thought of as a k-stage 
Markov process, and as a result interpreted as a Fisher kernel. Using this new 
insight we have shown how the features of a Fisher kernel can be constructed using 
a Finite State Model parameterisation which reflects the statistics of the frequency 
of occurance of features within the corpus. This model has then been extended 
further to incorporate sub-sequences of varying length, which is a great deal more 
flexible than the fixed-length approach. A procedure for determining informative 
sub-sequences (states in the FSM model) has also been given. Experimental results 
have shown that this model outperforms the standard tfidf bag of words model on 
a well known data set. Although the experiments in this paper are not extensive, 
they show that the approach of using a Finite-State-Model to generate a Fisher 
kernel gives new insights and more flexibility over the string kernel, and performs 
well. Future work would include determining the optimum value for the threshold 
t (maximum frequency of a sub-string occurring within the FSM before a state is 
expanded) as this currently has to be set a-priori. 
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