
String Kernels, Fisher Kernels and Finite
State Automata

Craig Saunders John Shawe-Taylor Alexei Vinokourov
Department of Computer Science

Royal Holloway, University of London
Email: {craig, j st, alexei }«lcs. rhul. ac. uk

Abstract

In this paper we show how the generation of documents can be
thought of as a k-stage Markov process, which leads to a Fisher ker
nel from which the n-gram and string kernels can be re-constructed.
The Fisher kernel view gives a more flexible insight into the string
kernel and suggests how it can be parametrised in a way that re
flects the statistics of the training corpus. Furthermore, the prob
abilistic modelling approach suggests extending the Markov pro
cess to consider sub-sequences of varying length, rather than the
standard fixed-length approach used in the string kernel. We give
a procedure for determining which sub-sequences are informative
features and hence generate a Finite State Machine model, which
can again be used to obtain a Fisher kernel. By adjusting the
parametrisation we can also influence the weighting received by the
features . In this way we are able to obtain a logarithmic weighting
in a Fisher kernel. Finally, experiments are reported comparing
the different kernels using the standard Bag of Words kernel as a
baseline.

1 Introduction

Recently the string kernel [6] has been shown to achieve good performance on text
categorisation tasks . The string kernel projects documents into a feature space
indexed by all k-tuples of symbols for some fixed k. The strength of the feature
indexed by the k-tuple U = (Ul, ... , Uk) for a document d is the sum over all
occurrences of U as a subsequence (not necessarily contiguous) in d, where each
occurrence is weighted by an exponentially decaying function of its length in d. This
naturally extends the idea of an n-gram feature space where the only occurrences
considered are contiguous ones.

The dimension of the feature space and the non-sparsity of even modestly sized
documents makes a direct computation of the feature vector for the string kernel
infeasible. There is, however, a dynamic programming recursion that enables the
semi-efficient evaluation of the kernel [6]. String kernels are apparently making no
use of the semantic prior knowledge that the structure of words can give and yet
they have been used with considerable success.

The aim of this paper is to place the n-gram and string kernels in the context of
probabilistic modelling of sequences, showing that they can be viewed as Fisher ker
nels of a Markov generation process. This immediately suggests ways of introducing
weightings derived from refining the model based on the training corpus.

Furthermore, this view also suggests extending consideration to subsequences of
varying lengths in the same model. This leads to a Finite State Automaton again
inferred from the data. The refined probabilistic model that this affords gives rise
to two Fisher kernels depending on the parametrisation that is chosen, if we take
the Fisher information matrix to be the identity.

We give experimental evidence suggesting that the new kernels are capturing useful
properties of the data while overcoming the computational difficulties of the original
string kernel.

2 The Fisher VIew of the n-gram and String kernels

In this section we show how the string kernel can be thought of as a type of Fisher
kernel [2] where the fixed-length subsequences used as the features in the string
kernel correspond to the parameters for building the model. In order to give some
insight into the kernel we first give a Fisher formulat ion of the n-gram kernel (i.e. the
string kernel which considers only contiguous sequences), and then extend this to
the full string kernel.

Let us assume that we have some document d of length s which is a sequence of
symbols belonging to some alphabet A, i.e. di E A, i = 1, ... , s. We can consider
document d as being generated by a k-stage Markov process. According to this
view, for sequences u E A k - l we can define the probability of observing a symbol x
after a sequence u as PU--+X. Sequences of k symbols therefore index the parameters
of our model. The probability of a document d being generated by the model is
therefore

Idl

P(d) = II Pd[j-k+!:j-l]--+djl

j =k

where we use the notation d[i: j] to denote the sequence didi+!·· ·dj . Now taking
the derivative of the log-probability:

o In P(d) o In TIj~k Pd[j -k+!:j -l]--+dj

opu--+x

Idl L olnpd[j-k+!:j-l]--+dj = tf(ux,d)

j=k opu --+ x Pu --+ x
(1)

where tf(ux,d) is the term frequency of ux in d, that is the number of times the
string ux occurs in d. l

1 Since the pu-+x are not independent it is not possible to take the partial derivative of
one parameter without affecting others. However we can approximate our approach:

We introduce an extra character c. For each (n - I)-gram u we assign a sufficiently
small probability to pu-+c and change the other pu-+x to pu-+x = pu-+x (1 - Pu-+c). We
now replace each occurence of Pu-+ c in P(d) by 1 - LaEA\{c }Pu-+ a . Thus, since uc never
occurs in d and Pu-+x ~ pv-+x, the u --+ x Fisher score entry for a document d becomes

tf(ux, d)
Pu-+x

tf(uc, d) ~ tf(ux , d)
pu-+ c pu-+ x

The Fisher kernel is subsequently defined to be

k(d,d') = UJrIUd',

where Ud is the Fisher score vector with ux-component a~n P(d) and I = Ed[UdUdTJ .
p u--t x

It has become traditional to set the matrix I to be the identity when defining a
Fisher kernel, though this undermines the very satisfying property of the pure defi
nition that it is independent of the parametrisation. We will follow this same route
mainly to reduce the complexity ofthe computation. We will, however, subsequently
consider alternative parameterisations.

Different choices of the parameters PU-r X give rise to different models and hence
different kernels . It is perhaps surprising that the n-gram kernel is recovered (up
to a constant factor) if we set PU-rX = IAI- I for all u E An-l and x E A, that is
the least informative parameter setting. This follows since the feature vector of a
document d has entries

We therefore recover the n-gram kernel as the Fisher kernel of a model which uses
a uniform distribution for generating documents.

Before considering how the PU-r X might be chosen non-uniformly we turn our at
tention briefly to the string kernel.

We have shown that we can view the n-gram kernel as a Fisher kernel. A little
more work is needed in order to place the full string kernel (which considers non
contiguous subsequences) in the same framework.

First we define an index set Sk-l,q over all (possibly non-contiguous) subsequences
of length k, which finish in position q,

Sk-l, q = {i : 1 :'S i l < i2 < ... < i k - l < i k = q}.

We now define a probability distribution P Sk_1 ,q over Sk - l,q by weighting sequence
i by)..l(i), where l(i) = i k - i l + 1 is the length of i , and normalising with a
fixed constant C . This may leave some probability unaccounted for, which can
be assigned to generating a spurious symbol. We denote by d [iJ the sequence of
characters di1 di2 ... dik . We now define a text generation model that generates the
symbol for position q by first selecting a sequence i from Sk-l,q according to the
fixed distribution P Sk _l ,q and then generates the next symbol based on Pd[i'] -rdik for
all possible values of dq where i' = (iI, i 2 , ••• , i k - l) is the vector i without its last
component. We will refer to this model as the Generalised k-stage Markov model
with decay fa ctor)... Hence, if we assume that distributions are uniform

a In P (d) a In TIj~k I:iESk_l ,j P Sk-l,j (i)Pd[i']-rd ik

apu-rx f a In I:iEsk_l ,j P Sk -l ,j (i)Pd[i'] -rdik

j = k aPu-rx

Idl

IAI L L P Sk -1 ,j (i)Xux (d[i])

Idl
IAIC- l L L)..l(i)Xux(d [i]),

j = k iESk_l ,j

where Xux is the indicator function for string ux . It follows that the corresponding
Fisher features will be the weighted sum over all subsequences with decay factor A.
In other words we recover the string kernel.

Proposition 1 The Fisher kernel of the generalised k-stage Markov model with
decay fa ctor A and constant Pu--+x is the string kernel of length k and decay fa ctor
A.

3 The Finite State Machine Model

Viewing the n-gram and string kernels as Fisher kernels of Markov models means
we can view the different sequences of k - 1 symbols as defining states with the
next symbol controlling the transition to the next state. We therefore arrive at a
finite state automaton with states indexed by A k - 1 and transitions labelled by the
elements of A . Hence, if u E Ak-l the symbol x E A causes the transition to state
v[2: k], where v = ux.

One drawback of the string kernel is that the value of k has to be chosen a-priori
and is then fixed. A more flexible approach would be to consider different length
subsequences as features, depending on their frequency. Subsequences that occur
very frequently should be given a low weighting, as they do not contain much infor
mation in the same way that stop words are often removed from the bag of words
representation. Rather than downweight such sequences an alternative strategy is
to extend their length. Hence, the 3-gram com could be very frequent and hence
not a useful discriminator. By extending it either backwards or forwards we would
arrive at subsequences that are less frequent and so potentially carry useful infor
mation. Clearly, extending a sequence will always reduce its frequency since the
extension could have been made in many distinct ways all of which contribute to
the frequency of the root n-gram.

As this derivation follows more naturally from the analysis of the n-gram kernel
described in Section 2 we will only consider contiguous subsequences also known
as substrings. We begin by introducing the general Finite State Machine (FSM)
model and the corresponding Fisher kernel.

Definition 2 A Finite State Machine model over an alphabet A IS a triple F =
(~, J,p) where

1. the non-empty set ~ of states IS a finit e subset of A*
closed under taking substrings,

2. the transition function J
J: ~ x A --+~,

is defin ed by

J(u, x) = v [j : l(v)], where v = ux and j = min{j : v [j : l(v)] E ~},

if the minimum is defined, otherwise the empty sequence f

3. for each state u the function p gives a function Pu, which is either a distri
bution over next symbols Pu (x) or the all one function Pu (x) = 1, for u E ~
and x E A.

Given an FSM model F = (~, J, p) to process a document d we start at the state
corresponding to the empty sequence f (guaranteed to be in ~ as it is non-empty and
closed under taking substrings) and follow the transitions dictated by the symbols

of the document. The probability of a document in the model is the product of the
values on all of the transitions used:

Idl

P.:F (d) = II Pd[id -1](dj),

j =l

where ij = min{i: d[i: j -1] E ~}. Note that requiring that the set ~ to be closed
under taking substrings ensures that the minimum in the definition of is is always
defined and that d[ij : j] does indeed define the state at stage j (this follows from
a simple inductive argument on the sequence of states) .

If we follow a similar derivation to that given in equation (1) we arrive at the
corresponding feature for document d and transition on x from u of

() tf((u, x), d)
¢;u,x d = ()' Pu x

where we use tf((u, x), d) to denote the frequency of the transition on symbol x
from a state u with non-unity Pu in document d.

Hence, given an FSM model we can construct the corresponding Fisher kernel fea
ture vector by simply processing the document through the FSM and recording the
counts for each transition. The corresponding feature vector will be sparse relative
to the dimension of the feature space (the total number of transitions in the FSM)
since only those transitions actually used will have non-zero entries. Hence, as for
the bag of words we can create feature vectors by listing the indices of transitions
used followed by their frequency. The number of non-zero features will be at most
equal to the number of symbols in the document.

Consider taking ~ = U7==-Ol Ai with all the distributions Pu uniform for u E A k - 1

and Pu == 1 for other u. In this case we recover the k-gram model and corresponding
kernel.

A problem that we have observed when experiment ing with the n-gram model is
that if we estimate the frequencies of transitions from the corpus certain transitions
can become very frequent while others from the same state occur only rarely. In
such cases the rare states will receive a very high weighting in the Fisher score
vector. One would like to use the strategy adopted for the idf weighting for the
bag of words kernel which is often taken to be

where m is the number of documents and m i the number containing term i. The
In ensures that the contrast in weighting is controlled. We can obtain this effect in
the Fisher kernel if we reparametrise the transition probabilities as follows

Pu(x) = exp(- exp(-tu(x))),

where tu(x) is the new parameter . With this parametrisation the derivative of the
In probabilities becomes

as required.

a lnpu(x)
atu(x)

exp(-tu(x)) = -lnpu(x),

Although this improves performance the problem of frequent substrings being un
informative remains . We now consider the idea outlined above of moving to longer
subsequences in order to ensure that transitions are informative.

4 Choosing Features

There is a critical frequency at which the most information is conveyed by a feature.
If it is ubiquitous as we observed above it gives little or no information for analysing
documents. If on the other hand it is very infrequent it again will not be useful
since we are only rarely able to use it. The usefulness is maximal at the threshold
between these two extremes. Hence, we would like to create states that occur not
too frequently and not too infrequently.

A natural way to infer the set of such states is from the training corpus. We select
all substrings that have occurred at least t t imes in the document corpus, where t
is a small but statistically visible number. In our experiments we took t = 10.

Hence, given a corpus S we create the FSM model F t (S) with

I;t (S) = {u E A* : u occurs at least t times in the corpus S} .

Taking this definition of I;t (S) we construct the corresponding finite state machine
model as described in Definition 2. We will refer to the model F t as the frequent
set FSM at threshold t.

We now construct the transition probabilities by processing the corpus through
the F t (S) keeping a tally of the number of times each transition is actually used.
Typically we initialise the counts to some constant value c and convert the resulting
counts into probabilities for the model. Hence, if fu ,x is the number of times we
leave state u processing symbol x, the corresponding probabilities will be

() fu,x + c
Pu X = lAic + 2::x/EA fu ,x l

(2)

Note that we will usually exclude from the count the transitions at the beginning
of a document d that start from states d[l : j] for some j ?: O.

The following proposition demonstrates that the model has the desired frequency
properties for the transitions. We use the notation u ~ v to indicate the transition
from state u to state v on processing symbol x.

Proposition 3 Given a corpus S th e FSM model F t (S) satisfies th e following prop
erty. Ign oring transitions from states indexed by d[l : i] for some document d of th e

corpus, th e frequency counts f u,x for transitions u ~ v in th e corpus S satisfy

for all u E I;t (S) .

Proof. Suppose that for some state u E I;t (S)

(3)

This implies that the string u has occurred at least tlAI times at the head of a
transition not at the beginning of a document. Hence, by the pigeon hole principle
there is ayE A such that y has occurred t times immediately before one of the
transitions in the sum of (3). Note that this also implies that yu occurs at least t
times in the corpus and therefore will be in I;t (S). Consider one of the transitions
that occurs after yu on some symbol x . This transition will not be of the form
u ~ v but rather yu ~ v contradicting its inclusion in the sum (3). Hence, the
proposition holds. •

Note that the proposition implies that no individual transition can be more frequent
than the full sum. The proposition also has useful consequences for the maximum
weighting for any Fisher score entries as the next corollary demonstrates.

Corollary 4 Given a corpus S if we construct the FSM model F t (S) and compute
the probabilities by counting transitions ignoring those from states indexed by d[l : i]
for some document d of the corpus, the probabilities on the transitions will satisfy

Proof. We substitute the bound given in the proposition into the formula (2). •

The proposition and corollary demonstrate that the choice of Ft(S) as an FSM
model has the desirable property that all of the states are meaningfully frequent
while none of the transitions is too frequent and furthermore the Fisher weighting
cannot grow too large for any individual transition.

In the next section we will present experimental results testing the kernels we have
introduced using the standard and logarithmic weightings. The baseline for the
experiments will always be the bag of words kernel using the TFIDF weighting
scheme. It is perhaps worth noting that though the IDF weighting appears similar
to those described above it makes critical use of the distribution of terms across
documents, something that is incompatible with the Fisher approach that we have
adopted. It is therefore very exciting to see the results that we are able to obtain
using these syntactic features and sub-document level weightings.

5 Experimental Results

Our experiments were conducted on the top 10 categories of the standard Reuters-
21578 data set using the "Mod Apte" split . We compared the standard n-gram
kernel with a Uniform, non-uniform and In weighting scheme, and the variable
length FSM model described in Section 4 both with uniform weighting and a In
weighting scheme. As mentioned in Section 4, the parameter t was set to 10. In
order to keep the comparison fair, the n-gram kernel features were also pruned from
the feature vector if they occured less than 10 times. For our experiments we used
5-gram features, which have previously been reported to give the best results [5].
The standard bag of words model using the normal tfidf weighting scheme is used
as a baseline. Once feature vectors had been created they were normalised and
the SVMlight software package [3] was used with the default parameter settings
to obtain outputs for the test examples. In order to compare algorithms, we used
the average performance measure commonly used in Information Retrieval (see e.g.
[4]). This is the average of precision values obtained when thresholding at each
positively classified document. If all positive documents in the corpus are ranked
higher than any negative documents, then the average precision is 100%. Average
precision incorporates both precision and recall measures and is highly sensitive to
document ranking, so therefore can be used to obtain a fair comparison between
methods. The results are shown in Table 1.

As can bee seen from the table, the variable-length subsequence method performs
as well as or better than all other methods and achieves a perfect ranking for
documents in one of the categories.

Method BoW ngrams FSA
Weighting TFIDF Uniform 1;: In 1;: Uniform In 1;:
earn 99.86 99.91 96.4 99.9 99.9 99.9
acq 99.62 99.61 99.7 99.5 99.7 99.7
money-fx 80.54 82.43 84.9 83.4 86.5 85.8
grain 99.69 99.67 99.9 99.4 97.8 97.5
crude 98.52 98.23 99.9 97.2 100.0 100.0
trade 95.29 95.53 94.6 95.6 94.6 91.3
interest 91.61 98.83 96.6 95.4 94.0 88.8
ship 96.84 99.42 91.7 98.9 92.7 98.4
wheat 98.52 98.7 97.2 99.3 95.3 98.4
corn 98.95 98.2 99.3 99.0 97.5 98.1

Table 1: Average precision results comparing TFIDF, n-gram and FSM features on
the top 10 categories of the reuters data set.

6 Discussion

In this paper we have shown how the string kernel can be thought of as a k-stage
Markov process, and as a result interpreted as a Fisher kernel. Using this new
insight we have shown how the features of a Fisher kernel can be constructed using
a Finite State Model parameterisation which reflects the statistics of the frequency
of occurance of features within the corpus. This model has then been extended
further to incorporate sub-sequences of varying length, which is a great deal more
flexible than the fixed-length approach. A procedure for determining informative
sub-sequences (states in the FSM model) has also been given. Experimental results
have shown that this model outperforms the standard tfidf bag of words model on
a well known data set. Although the experiments in this paper are not extensive,
they show that the approach of using a Finite-State-Model to generate a Fisher
kernel gives new insights and more flexibility over the string kernel, and performs
well. Future work would include determining the optimum value for the threshold
t (maximum frequency of a sub-string occurring within the FSM before a state is
expanded) as this currently has to be set a-priori.

References

[1] D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-
99-10, University of California, Santa Cruz, July 1999.

[2] T. Jaakkola, M. Diekhaus, and D. Haussler. Using the fisher kernel method to detect
remote protein homologies. 7th Intell. Sys. Mol. Bio!. , pages 149- 158, 1999.

[3] T. Joachims. Making large-scale svm learning practical. In B. Schiilkopf, C. Burges,
and A. Smola, editors , Advances in Kernel Methods - Support Vector Learning. MIT
Press, 1999.

[4] Y. Li, H. Zaragoza, R. Herbrich, J. Shawe-Taylor, and J. Kandola. The perceptron
algorithm with uneven margins. In Proceedings of the Nineteenth International Con
ference on Machine Learning (ICML '02), 2002.

[5] H Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and Watkins C. Text clas
sification using string kernels. Journal of Machine Learning Research, (2):419- 444,
2002.

[6] H. Lodhi , J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using
string kernels. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in
Neural Information Processing Systems 13, pages 563- 569. MIT Press, 2001.

[7] C. Watkins. Dynamic alignment kernels. Technical Report CSD-TR-98-11, Royal
Holloway, University of London, January 1999.

