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Abstract 

The Temporal Coding Hypothesis of Miller and colleagues [7] sug­
gests that animals integrate related temporal patterns of stimuli 
into single memory representations. We formalize this concept 
using quasi-Bayes estimation to update the parameters of a con­
strained hidden Markov model. This approach allows us to account 
for some surprising temporal effects in the second order condition­
ing experiments of Miller et al. [1 , 2, 3], which other models are 
unable to explain. 

1 Introduction 

Animal learning involves more than just predicting reinforcement. The well-known 
phenomena of latent learning and sensory preconditioning indicate that animals 
learn about stimuli in their environment before any reinforcement is supplied. More 
recently, a series of experiments by R. R. Miller and colleagues has demonstrated 
that in classical conditioning paradigms, animals appear to learn the temporal struc­
ture of the stimuli [8]. We will review three of these experiments. We then present 
a model of conditioning based on a constrained hidden Markov model , using quasi­
Bayes estimation to adjust the model parameters online. Simulation results confirm 
that the model reproduces the experimental observations, suggesting that this ap­
proach is a viable alternative to earlier models of classical conditioning which can­
not account for the Miller et al. experiments. Table 1 summarizes the experimental 
paradigms and the results. 

Expt. 1: Simultaneous Conditioning. Responding to a conditioned stimulus 
(CS) is impaired when it is presented simultaneously with the unconditioned stimu­
lus (US) rather than preceding the US. The failure of the simultaneous conditioning 
procedure to demonstrate a conditioned response (CR) is a well established result 
in the classical conditioning literature [9]. Barnet et al. [1] reported an interesting 



Phase 1 Phase 2 Test => Result Test => Result 
Expt. 1 (4)T+ US (4)C -+ T T=> - C =>CR 

Expt.2A (12)T -+ C (8)T -+ US C=> -
Expt. 2B (12)T -+ C (8)T ---+ US C =>CR 

Expt. 3 (96)L -+ US -+ X (8) B -+ X X=> - B =>CR 

Table 1: Experimental Paradigms. Phases 1 and 2 represent two stages of training trials, 
each presented (n) times. The plus sign (+ ) indicates simultaneous presentation of stimuli; 
the short arrow (-+) indicates one stimulus immediately following another; and the long 
arrow (-----+) indicates a 5 sec gap between stimulus offset and the following stimulus onset. 
For Expt. 1, the tone T, click train C, and footshock US were all of 5 sec duration. For 
Expt. 2, the tone and click train durations were 5 sec and the footshock US lasted 0.5 
sec. For Expt. 3, the light L, buzzer E , and auditory stimulus X (either a tone or white 
noise) were all of 30 sec duration, while the footshock US lasted 1 sec. CR indicates a 
conditioned response to the test stimulus. 

second-order extension of the classic paradigm. While a tone CS presented simulta­
neously with a footshock results in a minimal CR to the tone, a click train preceding 
the tone (in phase 2) does acquire associative strength, as indicated by a CR. 

Expt. 2: Sensory Preconditioning. Cole et al. [2] exposed rats to a tone T 
immediately followed by a click train C. In a second phase, the tone was paired 
with a footshock US that either immediately followed tone offset (variant A), or 
occurred 5 sec after tone offset (variant B). They found that when C and US both 
immediately follow T , little conditioned response is elicited by the presentation of 
C. However, when the US occurs 5 sec after tone offset, so that it occurs later than 
C (measured relative to T), then C does come to elicit a CR. 

Expt. 3: Backward Conditioning. In another experiment by Cole et al. [3], 
rats were presented with a flashing light L followed by a footshock US, followed by 
an auditory stimulus X (either a tone or white noise). In phase 2, a buzzer B was 
followed by X. Testing revealed that while X did not elicit a CR (in fact, it became 
a conditioned inhibitor), X did impart an excitatory association to B. 

2 Existing Models of Classical Conditioning 

The Rescorla-Wagner model [11] is still the best-known model of classical condi­
tioning, but as a trial-level model, it cannot account for within-trial effects such 
as second order conditioning or sensitivity to stimulus timing. Sutton and Barto 
developed V-dot theory [14] as a real-time extension of Rescorla-Wagner. Further 
refinements led to the Temporal Difference (TD) learning algorithm [14]. These 
extensions can produce second order conditioning. And using a memory buffer 
representation (what Sutton and Barto call a complete serial compound), TD can 
represent the temporal structure of a trial. However, TD cannot account for the em­
pirical data in Experiments 1- 3 because it does not make inferences about temporal 
relationships among stimuli; it focuses solely on predicting the US. In Experiment 
1, some versions of TD can account for the reduced associative strength of a CS 
when its onset occurs simultaneously with the US, but no version of TD can explain 
why the second-order stimulus C should acquire greater associative strength than 



T. In Experiment 2, no learning occurs in Phase 1 with TD because no prediction 
error is generated by pairing T with C. As a result, no CR is elicited by C after 
T has been paired with the US in Phase 2. In Experiment 3, TD fails to predict 
the results because X is not predictive of the US; thus X acquires no associative 
strength to pass on to B in the second phase. 

Even models that predict future stimuli have trouble accounting for Miller et al. 's 
results. Dayan's "successor representation" [4], the world model of Sutton and 
Pinette [15], and the basal ganglia model of Suri and Schultz [13] all attempt to 
predict future stimulus vectors. Suri and Schultz's model can even produce one 
form of sensory preconditioning. However, none of these models can account for 
the responses in any of the three experiments in Table 1, because they do not make 
the necessary inferences about relations among stimuli. 

Temporal Coding Hypothesis The temporal coding hypothesis (TCH) [7] 
posits that temporal contiguity is sufficient to produce an association between stim­
uli. A CS does not need to predict reward in order to acquire an association with 
the US. Furthermore, the association is not a simple scalar quantity. Instead, infor­
mation about the temporal relationships among stimuli is encoded implicitly and 
automatically in the memory representation of the trial. Most importantly, TCH 
claims that memory representations of trials with similar stimuli become integrated 
in such a way as to preserve the relative temporal information [3]. 

If we apply the concept of memory integration to Experiment 1, we get the memory 
representation, C ---+ T + US. If we interpret a CR as a prediction of imminent 
reinforcement, then we arrive at the correct prediction of a strong response to C 
and a weak response to T. Integrating the hypothesized memory representations of 
the two phases of Experiment 2 results in: A) T ---+ C+US and B) T ---+ C ---+ US. The 
stimulus C is only predictive ofthe US in variant B, consistent with the experimental 
findings. For Experiment 3, an integrated memory representation of the two phases 
produces L+ B ---+ US ---+ X. Stimulus B is predictive of the US while X is not. Thus, 
the temporal coding hypothesis is able to account for the results of each of the three 
experiments by associating stimuli with a timeline. 

3 A Computational Model of Temporal Coding 

A straightforward formalization of a timeline is a Markov chain of states. For 
this initial version of our model, state transitions within the chain are fixed and 
deterministic. Each state represents one instant of time, and at each timestep a 
transition is made to the next state in the chain. This restricted representation is 
key to capturing the phenomena underlying the empirical results. Multiple time­
lines (or Markov chains) emanate from a single holding state. The transitions out 
of this holding state are the only probabilistic and adaptive transitions in the sim­
plified model. These transition probabilities represent the frequency with which 
the timelines are experienced. Figure 1 illustrates the model structure used in all 
simulations. 

Our goal is to show that our model successfully integrates the timelines of the two 
training phases of each experiment. In the context of a collection of Markov chains, 
integrating timelines amounts to both phases of training becoming associated with 
a single Markov chain. Figure 1 shows the integration of the two phases of Expt. 2B. 



Figure 1: A depiction of the state and observation structure of the model. Shown are two 
timelines, one headed by state j and the other headed by state k. State i , the holding state, 
transitions to states j and k with probabilities aij and aik respectively. Below the timeline 
representations are a sequence of observations represented here as the symbols T, C and 
US. The T and C stimuli appear for two time steps each to simulate their presentation for 
an extended duration in the experiment. 

During the second phase of the experiments, the second Markov chain (shown in 
Figure 1 starting with state k) offers an alternative to the chain associated with the 
first phase of learning. If we successfully integrate the timelines, this second chain 
is not used. 

As suggested in Figure 1, associated with each state is a stimulus observation. 
"Stimulus space" is an n-dimensional continuous space, where n is the number 
of distinct stimuli that can be observed (tone, light, shock, etc.) Each state has 
an expectation concerning the stimuli that should be observed when that state is 
occupied. This expectation is modeled by a probability density function, over this 
space, defined by a mixture of two multivariate Gaussians. The probability density 
at stimulus observation xt in state i at time tis , 

where Wi is a mixture coefficient for the two Gaussians associated with state i. The 
Gaussian means /tiD and /til and variances ufo and ufl are vectors of the same 
dimension as the stimulus vector xt. Given knowledge of the state, the stimulus 
components are assumed to be mutually independent (covariance terms are zero). 
We chose a continuous model of observations over a discrete observation model to 
capture stimulus generalization effects. These are not pursued in this paper. 

For each state, the first Gaussian pdf is non-adaptive, meaning /tiO is fixed about 
a point in stimulus space representing the absence of stimuli. ufo is fixed as well. 
For the second Gaussian, /til and Ufl are adaptive. This mixture of one fixed and 
one adaptive Gaussian is an approximation to the animal's belief distribution about 
stimuli, reflecting the observed tolerance animals have to absent expected stimuli. 
Put another way, animals seem to be less surprised by the absence of an expected 
stimulus than by the presence of an unexpected stimulus. 

We assume that knowledge of the current state st is inaccessible to the learner. This 
information must be inferred from the observed stimuli. In the case of a Markov 
chain, learning with hidden state is exactly the problem of parameter estimation in 
hidden Markov models. That is, we must update the estimates of w, /tl and ur for 



each state, and aij for each state transition (out of the holding state), in order to 
maximize the likelihood of the sequence of observations 

The standard algorithm for hidden Markov model parameter estimation is the 
Baum-Welch method [10]. Baum-Welch is an off-line learning algorithm that re­
quires all observations used in training to be held in memory. In a model of classical 
conditioning, this is an unrealistic assumption about animals' memory capabilities. 
We therefore require an online learning scheme for the hidden Markov model, with 
only limited memory requirements. 

Recursive Bayesian inference is one possible online learning scheme. It offers 
the appealing property of combining prior beliefs about the world with cur­
rent observations through the recursive application of Bayes' theorem, p(Alxt) IX 

p(xt lxt- 1 , A)p(AIXt- 1 ). The prior distribution, p(AIXt- 1 ) reflects the belief over 
the parameter A before the observation at time t , xt. X t- 1 is the observation his­
tory up to time t-l, i.e. X t- 1 = {xt- 1 ,xt- 2 , ... }. The likelihood, p(xtIXt-l,A) 
is the probability density over xt as a function of the parameter A. 

Unfortunately, the implementation of exact recursive Bayesian inference for a con­
tinuous density hidden Markov model (CDHMM) is computationally intractable. 
This is a consequence of there being missing data in the form of hidden state. 
With hidden state, the posterior distribution over the model parameters, after the 
observation, is given by 

N 

p(Alxt) IX LP(xtlst = i, X t- 1 , A)p(st = iIXt- 1 , A)p(AIXt- 1 ), (2) 
i=1 

where we have summed over the N hidden states. Computing the recursion for 
multiple time steps results in an exponentially growing number of terms contributing 
to the exact posterior. 

We instead use a recursive quasi-Bayes approximate inference scheme developed 
by Huo and Lee [5], who employ a quasi-Bayes approach [12]. The quasi-Bayes 
approach exploits the existence of a repeating distribution (natural conjugate) over 
the parameters for the complete-data CDHMM. (i.e. where missing data such as the 
state sequence is taken to be known). Briefly, we estimate the value of the missing 
data. We then use these estimates, together with the observations, to update the 
hyperparameters governing the prior distribution over the parameters (using Bayes' 
theorem). This results in an approximation to the exact posterior distribution over 
CDHMM parameters within the conjugate family of the complete-data CDHMM. 
See [5] for a more detailed description of the algorithm. 

Estimating the missing data (hidden state) involves estimating transition probabil­
ities between states, ~0 = Pr(sT = i, ST+1 = jlXt , A), and joint state and mixture 
component label probabilities ([k = Pr(sT = i, IT = klXt , A). Here zr = k is the 
mixture component label indicating which Gaussian, k E {a, I}, is the source of the 
stimulus observation at time T. A is the current estimate of all model parameters. 

We use an online version of the forward-backward algorithm [6] to estimate ~0 and 
([1. The forward pass computes the joint probability over state occupancy (taken to 
be both the state value and the mixture component label) at time T and the sequence 
of observations up to time T. The backward pass computes the probability of the 
observations in a memory buffer from time T to the present time t given the state 



occupancy at time T. The forward and backward passes over state/observation 
sequences are combined to give an estimate of the state occupancy at time T given 
the observations up to the present time t. In the simulations reported here the 
memory buffer was 7 time steps long (t - T = 6). 

We use the estimates from the forward-backward algorithm together with the ob­
servations to update the hyperparameters. For the CDHMM, this prior is taken 
to be a product of Dirichlet probability density functions (pdfs) for the transition 
probabilities (aij) , beta pdfs for the observation model mixture coefficients (Wi) 

and normal-gamma pdfs for the Gaussian parameters (Mil and afl)' The basic hy­
perparameters are exponentially weighted counts of events, with recency weighting 
determined by a forgetting parameter p. For example, "'ij is the number of expected 
transitions observed from state i to state j, and is used to update the estimate of 
parameter aij. The hyperparameter Vik estimates the number of stimulus observa­
tions in state i credited to Gaussian k , and is used to update the mixture parameter 
Wi. The remaining hyperparameters 'Ij;, ¢, and () serve to define the pdfs over Mil 
and afl' The variable d in the equations below indexes over stimulus dimensions. 
Si1d is an estimate of the sample variance, and is a constant in the present model. 

T _ ((T-1) 1) 1 (:T 
"'ij - P "'ij - + + '>ij 

T _ ((T-1) 1) 1 r T 
v ik - P v ik - + + '>ik 

. I,T .1,(T-1) r T 
'l' i1d = P 'I' i1d + '>i1 

,/,T _ p(,/,(T-1) _ 1) + 1H[1 
'l' i 1d - 'l'i1d 2 2 

( ) 7" 0,,( 7"-1 ) ,7" () 
()T _ p() T- 1 + (i1 Sild + Po/ i 1d 'il (xT _ II. T- 1 )2 

i1d - i1d 2 2(p1/Ji;d 1) H[1) d f"' i 1d 

In the last step of our inference procedure, we update our estimate of the model 
parameters as the mode of their approximate posterior distribution. While this is 
an approximation to proper Bayesian inference on the parameter values , the mode 
of the approximate posterior is guaranteed to converge to a mode of the exact 
posterior. In the equations below, N is the number of states in the model. 

T_ v[1- 1 
Wi - vio + viI -2 

4 Results and Discussion 

The model contained two timelines (Markov chains). Let i denote the holding 
state and j, k the initial states of the two chains. The transition probabilities were 
initialized as aij = aik = 0.025 and aii = 0.95. Adaptive Gaussian means Mild were 
initialized to small random values around a baseline of 10-4 for all states. The 
exponential forgetting factor was P = 0.9975, and both the sample variances Si1d 

and the fixed variances aIOd were set to 0.2. 

We trained the model on each of the experimental protocols of Table 1, using the 
same numbers of trials reported in the original papers. The model was run contin­
uously through both phases of the experiments with a random intertrial interval. 
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Figure 2: Results from 20 runs of the model simulation with each experimental paradigm. 
On the ordinate is the total reinforcement (US) , on a log scale, above the baseline (an 
arbitrary perception threshold) expected to occur on the next time step. The error bars 
represent two standard deviations away from the mean. 

Figure 2 shows the simulation results from each of the three experiments. If we 
assume that the CR varies monotonically with the US prediction, then in each case, 
the model's predicted CR agreed with the observations of Miller et al. 

The CR predictions are the result of the model integrating the two phases of learning 
into one t imeline. At the t ime of the presentation of the Phase 2 stimuli, the states 
forming the timeline describing the Phase 1 pattern of stimuli were judged more 
likely to have produced the Phase 2 stimuli than states in the other t imeline, which 
served as a null hypothesis. In another experiment, not shown here , we trained the 
model on disjoint stimuli in the two phases. In that situation it correctly chose a 
separate t imeline for each phase, rather than merging the two. 

We have shown that under the assumption that observation probabilities are mod­
eled by a mixture of Gaussians, and a very restrictive state transition structure, a 
hidden Markov model can integrate the memory representations of similar temporal 
stimulus patterns. "Similarity" is formalized in this framework as likelihood under 
the t imeline model. We propose this model as a mechanism for the integration of 
memory representations postulated in the Temporal Coding Hypothesis. 

The model can be extended in many ways. The current version assumes that event 
chains are long enough to represent an entire trial, but short enough that the model 
will return to the holding state before the start of the next trial. An obvious 
refinement would be a mechanism to dynamically adjust chain lengths based on 
experience. We are also exploring a generalization of the model to the semi-Markov 
domain, where state occupancy duration is modeled explicitly as a pdf. State tran­
sitions would then be tied to changes in observations, rather than following a rigid 
progression as is currently the case. Finally, we are experiment ing with mechanisms 
that allow new chains to be split off from old ones when the model determines that 
current stimuli differ consistently from the closest matching t imeline. 

Fitting stimuli into existing t imelines serves to maximize the likelihood of current 
observations in light of past experience. But why should animals learn the temporal 
structure of stimuli as t imelines? A collection of timelines may be a reasonable 
model of the natural world. If this is true, then learning with such a strong inductive 
bias may help t he animal to bring experience of related phenomena to bear in novel 
sit uations- a desirable characteristic for an adaptive system in a changing world. 
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