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Abstract 

Mesoscopical, mathematical descriptions of dynamics of popula
tions of spiking neurons are getting increasingly important for the 
understanding of large-scale processes in the brain using simula
tions. In our previous work, integral equation formulations for 
population dynamics have been derived for a special type of spik
ing neurons. For Integrate- and- Fire type neurons , these formula
tions were only approximately correct. Here, we derive a math
ematically compact, exact population dynamics formulation for 
Integrate- and- Fire type neurons. It can be shown quantitatively 
in simulations that the numerical correspondence with microscop
ically modeled neuronal populations is excellent. 

1 Introduction and motivation 

The goal of the population dynamics approach is to model the time course of the col
lective activity of entire populations of functionally and dynamically similar neurons 
in a compact way, using a higher descriptionallevel than that of single neurons and 
spikes. The usual observable at the level of neuronal populations is the population
averaged instantaneous firing rate A(t), with A(t)6.t being the number of neurons 
in the population that release a spike in an interval [t, t+6.t). Population dynamics 
are formulated in such a way, that they match quantitatively the time course of a 
given A(t), either gained experimentally or by microscopical, detailed simulation. 

At least three main reasons can be formulated which underline the importance 
of the population dynamics approach for computational neuroscience. First, it 
enables the simulation of extensive networks involving a massive number of neurons 



and connections, which is typically the case when dealing with biologically realistic 
functional models that go beyond the single neuron level. Second, it increases the 
analytical understanding of large-scale neuronal dynamics , opening the way towards 
better control and predictive capabilities when dealing with large networks. Third, 
it enables a systematic embedding of the numerous neuronal models operating at 
different descriptional scales into a generalized theoretic framework, explaining the 
relationships, dependencies and derivations of the respective models. 

Early efforts on population dynamics approaches date back as early as 1972, to the 
work of Wilson and Cowan [8] and Knight [4], which laid the basis for all current 
population-averaged graded-response models (see e.g. [6] for modeling work using 
these models). More recently, population-based approaches for spiking neurons were 
developed, mainly by Gerstner [3 , 2] and Knight [5]. In our own previous work [1], 
we have developed a theoretical framework which enables to systematize and sim
ulate a wide range of models for population-based dynamics. It was shown that 
the equations of the framework produce results that agree quantitatively well with 
detailed simulations using spiking neurons, so that they can be used for realistic 
simulations involving networks with large numbers of spiking neurons. Neverthe
less, for neuronal populations composed of Integrate-and-Fire (I&F) neurons, this 
framework was only correct in an approximation. In this paper, we derive the exact 
population dynamics formulation for I&F neurons. This is achieved by reducing 
the I&F population dynamics to a point process and by taking advantage of the 
particular properties of I&F neurons. 

2 Background: Integrate-and-Fire dynamics 

2.1 Differential form 

We start with the standard Integrate- and- Fire (I&F) model in form of the well
known differential equation [7] 

(1) 

which describes the dynamics of the membrane potential Vi of a neuron i that is 
modeled as a single compartment with RC circuit characteristics. The membrane 
relaxation time is in this case T = RC with R being the membrane resistance and C 
the membrane capacitance. The resting potential v R est is the stationary potential 
that is approached in the no-input case. The input arriving from other neurons is 
described in form of a current ji. 

In addition to eq. (1), which describes the integrate part of the I&F model, the 
neuronal dynamics are completed by a nonlinear step. Every time the membrane 
potential Vi reaches a fixed threshold () from below, Vi is lowered by a fixed amount 
Ll > 0, and from the new value of the membrane potential integration according to 
eq. (1) starts again. 

if Vi(t) = () (from below) . (2) 

At the same time, it is said that the release of a spike occurred (i.e., the neuron 
fired), and the time ti = t of this singular event is stored. Here ti indicates the 
time of the most recent spike. Storing all the last firing times, we gain the sequence 
of spikes {t{} (spike ordering index j, neuronal index i). 



2.2 Integral form 

Now we look at the single neuron in a neuronal compound. We assume that the 
input current contribution ji from presynaptic spiking neurons can be described 
using the presynaptic spike times tf, a response-function ~ and a connection weight 
W· . ',J 

ji(t) = l: Wi ,j l: ~(t - tf) (3) 
j f 

Integrating the I&F equation (1) beginning at the last spiking time tT, which de
termines the initial condition by Vi(ti) = vi(ti - 0) - 6., where vi(ti - 0) is the 
membrane potential just before the neuron spikes, we get 1 

Vi(t) = vRest + fj(t - t:) + l: Wi ,j l: a(t - t:; t - tf) , (4) 
j f 

with the refractory function 

fj(s) = - (vRest - Vi(t:)) e- S / T (5) 

and the alpha-function 
Sf 

a(s; s') = r ds" e-[sf -S"J/T ~(s") . 
JSI_S 

(6) 

If we start the integration at the time ti* of the spike before the last spike, then for 
ti* :::; t < ti the membrane potential is given by an expression like eq. (4), where ti 
is replaced by t:i* . Especially we can now express v( ti - 0) and therefore the initial 
condition for an integration starting at tT in terms of ti* and v(ti* - 0). In this 
way, we can proceed repetitively and move back into the past. After some simple 
algebra this results in 

Vi(t) = vRest + l:ry(t-t{)+ l:Wi,j l:a(oo ;t - tf) , 
f j f 
~ ~-------y~------~ 

vfef(t) v~yn(t) 

with a refractory function wich differs in the scale factor from that in eq. (5) 

ry(s) = -6. e- S / T • 

(7) 

(8) 

The components vref(t) and v?n(t) to the membrane potential indicate refractory 
and synaptic components to the neuron i, respectively, as normally used in the 
Spike- Response- Model (SRM) notation [2]. 

Both equations (4) and (7) formulate the neuronal dynamics using a refractory 
component, which depends on the own spike releases of a neuron, and a synaptic 
component, which comprises the integrated input contribution to the membrane 
potential by arrival of spikes from other neurons 2. The synaptic component is based 
on the alpha-function characteristic of isolated arriving spikes, with an increase of 
the membrane potential after spike arrival and a subsequent exponential decrease. 

1 Strictly speaking, the constants vRest, T, () and ,6, and the function 1]( s) may vary for 
each neuron, so that they should be written with a subindex i [similarly for n(s; s') , which 
may vary for each connection j -+ i so that we should write it with subindices i, j]. For 
the sake of clarity, we omit these indices here . 

2S0 the I&F model can be formulated as a special case of the Spike- Response- Model, 
which defines the neuronal dynamics in the integral formulation. 



The comparison of the equivalent expressions eq. (4) and eq. (7) reveals an interest
ing property of the I&F model. They look very similar, but in eq. (4), the refractory 
component depends only on the time elapsed since the last spike (thus reflecting a 
renewal property, sometimes also called a short term memory for refractory proper
ties), whereas in eq. (7), it depends on a sum of the contributions of all past spikes. 
The simpler form of the refractory contribution in eq. (4) is achieved at the cost 
of an alpha-function that now depends on the time t - ti elapsed since the last 
own spike in addition to the times t - tf elapsed since the release of spikes at the 
presynaptic neurons j that provide input to i. In eq. (7) , we have a more complex 
refractory contribution, but an alpha-function that does not depend on the last own 
spike time any more. 

2.3 Probabilistic spike release 

Probabilistic firing is introduced into the I&F model eq. (4) resp. (7) by using 
threshold noise. The spike release of each neuron is controlled by a hazard function 
>.(v), so that 

>.(v)dt = Prob. that a neuron with membrane potential v spikes in [t , t + dt) 
(9) 

When a neuron spikes, we proceed as usual: The membrane potential is reset by a 
fixed amount 6. and the I&F dynamics continues. 

3 Population dynamics 

3.1 Density description 

Descriptions of neuronal populations usually assume a neuronal density function 
p(t; X) which depends on the state variables X of the neurons. The density quan
tifies the likelihood that a neuron picked out of the population will be found in the 
vicinity of the point X in state space, 

p(t; X) dX = Portion of neurons at time t with state in [X, X + dX) (10) 

If we know p(t; X) , the population activity A(t) can be easily calculated. Using the 
hazard function >'(t; X), the instantaneous population activity (spikes per time) can 
be calculated by computing the spike release averaged over the population, 

A(t) = J dX >.(t; X) p(t; X) (11) 

The population dynamics is then given by the time course of the neuronal den
sity function p(t; X), which changes because each neuron evolves according to its 
own internal dynamics, e.g. after a spike release and the subsequent reset of the 
membrane potential. 

The main challenge for the formulation of a population dynamics resides in selecting 
a low-dimensional state space [for an easy calculation of A(t)] and a suitable form 
for gtp(t; X). 

As an example, for the population dynamics for I&F neurons it would be straight
forward to use the membrane potential v from eq. (1) as the state variable X. But 
this leads to a complicated density dynamics, because the dynamics for v(t) consist 
of a continuous (differential equation (1)) and a discrete part (spike generation). 
Therefore, here we concentrate on an alternative description that allows a compact 
formulation of the desired I&F density dynamics. 



3.2 Exact population dynamics for I&F neurons 

Which is the best state space for a population dynamics of I&F neurons? For the 
formulation of a population dynamics, it is usually assumed that the synaptic con
tributions to the membrane potential are identical for all neurons. This is the case 
if we group all neurons of the same dynamical type and with identical connectivity 
patterns into one population. That is, we say that neurons i and i' belong to the 
same population if Wi,j = Wi',j for all j (for simulations of realistic networks of 
spiking neurons, this will of course never be exactly the case, but it is reasonable 
to assume that a grouping of neurons into populations can be achieved to a good 
approximation) . 

In our case, looking at eq. (4), we see that , since o:(s, s') depends on s = t - ti and 
therefore on the own last spike time, the synaptic contribution to the membrane 
potential differs according to the state of the neuron. Thus we regard eq. (7). Here, 
we see that for identical connectivity patterns Wi,j, the synaptic contributions are 
the same for all neurons, because 0:(00, s') does not depend on the own spike time 
any more. Which are then the state variables of eq. (1) for the density description? 
We see that, for a fixed synaptic contribution, the membrane potential Vi is fully 
determined by the set of the own past spiking times {tf}. But this would mean 
an infinite-dimensional density for the state description of a population, and, ac
cordingly, a computationally overly expensive calculation of the population activity 
A(t) according to eq. (11). 

To avoid this we take advantage of a particular property of the I&F model. Accord
ing to eq. (8), the single spike refractory contributions 'TJ(s) are exponential. Since 
any sum of exponential functions with common relaxation constant T can be again 
expressed as as an exponential function with the same T , we can write instead of 
vrf(t) from eq. (7) 

(12) 
Now the membrane potential Vi(t) only depends on the time of the last own spike 
ti and the refractory contribution amplitude modulation factor at the last spike 'TJi . 
That is, we have transferred the effect of all spikes previous to the last one into 'TJi. 
In addition, we have to care about updating of ti and 'TJi when a neuron spikes so 
that we get 3 

'TJi --+ 'TJi = 1 + 'TJie -(t-tn!T , 
ti --+ ti = t . 

(13) 

The effect of taking into account more than the most recent spike ti in the refractory 
component vief(t) leads to a modulation factor 'TJi greater than 1, in particular if 
spikes come in a rapid succession so that refractory contributions can accumulate. 

Instead of using a modulation factor 'TJi the effect of previous spikes can also be 
taken into account by introducing an effective last spiking time ii. 

vi"f(t) = 'TJ(t - in = 'TJi'TJ(t - tn , 

where ii and 'TJi are connected by 

i; = t; + TIn'TJi 

(14) 

(15) 

The effect of i* is sort of funny. Because of 'TJi ::::: 1 it holds for the effective last 
spiking time ii ::::: ti. This means, that , while at a given time t it is allways ti :::; t, 
it happens that ii ::::: t, meaning the neurons behave as if they would spike in the 
future. 

3Here, the order of reemplacement matters; first we have to reemplace 1]:, then ti . 



For the membrane potential we get now instead of eq. (7) 

Vi(t) = vRest + ry(t - tn + 2..: Wi ,j 2..: 0:(00; t - t;) (16) 
j f 

and for the update rule for the effective last spiking time t; follows 

tA* tA* f (t tA*) i-+i= 'i' (17) 
with 

(18) 

Therefore we can regard the dimensionality of the state space of the I&F dynamics 
as 1-dimensional in the description of eq. (16). The dynamics of the single I&F 
neurons now turns out to be very simple: Calculate the membrane potential Vi(t) 
using eq. (16) together with the state variable t;, and check if Vi(t) exceeds the 
threshold. If not, move forward in time and calculate again. If the membrane 
potential exceeds threshold, update t; according to eq. (17) and then proceed with 
the calculation of Vi(t) as normal. 

Using this single neuron dynamics , we can now proceed to gain a population dy
namics using a density p(t; t*). The time t is here the explicit time dependence, 
whereas t* denote the state variable of the population. By fixing t* and the synap
tic contribution vsyn(t) to the membrane potential, the state of a neuron is fully 
determined and the hazard function can be written as ,X[vsyn(t); t*]. 

The dynamics of the density p(t; t*) is then calculated as follows. Changes of p(t; t*) 
occur when neurons spike and t* is updated according to eq. (17). The hazard 
function controls the spike release, and, therefore, the change of p(t; t*). For chosen 
state variables, p(t; t*) decreases due to spiking of the neurons with the fixed t*, 
and increases because neurons with other t'* spike and get updated in just that 
way that after updating their state variable falls around t*. This occurs according 
to the reemplacement rule eq. (17) when 

f(t, t'*) = t* . (19) 

Taking all together the dynamics of the density p(t; t*) is given by 

decrease due to same state t* spiking 
A 

-ftp(t;t*) = '-,X[vsyn(t); t*]p(t; t*)' 

1+ 00 

+ -00 dt'* 8[J(t, t'*) - t*] ,X[vsyn(t); t'*] p(t; t'*) 

increase due to spiking of neurons with other states t'* 

(20) 

The population activity can then be calculated using the density according to 
eq. (11) as follows 

1+00 

A(t) = - 00 dt* ,X[vsyn(t); t*] p(t; t*) (21) 

Remark that the expression for the density dynamics (eq. 20) automatically con
serves the norm of the density, so that 

1+00 

- 00 dt* p( t ; t*) = const , (22) 

which is a necessary condition because the number of neurons participating in the 
dynamics must remain constant. 



4 Simulations 

The dynamics of a population of I&F neurons , represented by the time course 
of their joint activity, can now be easily calculated in terms of the differential 
equation (20) , if the neuronal state density of the neuronal population p(t; i*) and 
the synaptic input vsyn(t) are known. This means that all we have to store is the 
density p(t; i*) for past and future effective last spiking times i* 4 . Favorably for 
numerical simulations, only a limited time window of i* around the actual time t 
is needed for the dynamics. The activity A(t) only appears as an auxiliary variable 
that is calculated with the help of the neuronal density. 

In figure 1 the simulation results for populations of of spiking neurons are shown. 
The neurons are uncoupled and a hazard function 

A(V) = ~e2,B(v-e) , 
TO 

(23) 

with spike rate at threshold liTO = 1.0ms-1 , a kind of inverse temperature (3 = 2.0, 
which controls the noise level, and the threshold e = 1.0. The other parameters of 
the model in eq. (1) are: resting potential vRest = 0, jump in membrane potential 
after spike release ~ = 1 and time constant T = 20ms. This parameters are chosen 
to be biologicaly plausible. 

r-------
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Figure 1: Activity A(t) of simulated populations of neurons. The neurons are 
uncoupled and to each neuron the same synaptic field vsyn(t), ploted in c) and d), 
is applied. a) shows the activity A(t) for a population of I&F neurons simulated 
on the one hand as N = 10000 single neurons (solid line) using eq. (7) and on the 
other hand using the density dynamics eq. (20) (dashed line). In b) the activity 
A(t) of a population ofI&F neurons (dashed line) and a population of SRM neurons 
with renewal (solid line) are compared. For all simulations the same parameters as 
specified in the text were used. 

The simulations show that the density dynamics eq. (20) reproduces the activity 
A( t) of a population of single I&F neurons almost perfect, with the exception of the 
noise in the single neuron simulations due to the finite size effects. This holds even 
for the peaks occuring at the steps of the applied synaptic field vsyn (t), although the 
density dynamics is entirely based on differential equations and one would therefore 
not expect such an excellent match for fast changes in activity. 

4 VSYll (t) only appears as a scalar in the dynamics, so that no integration over time takes 
place here. 



The simulations also show that there can be a big difference between I&F and SRM 
neurons with renewal. Because of the accumulation of the refractory effects of all 
former spikes in the case of I&F neurons the activity A(t) is generaly lower than 
for the SRM neurons with renewal and the higher the absolute actitvity level the 
bigger is the difference between both. 

5 Conclusions 

In this paper we derived an exact differential equation density dynamics for a popu
lation of I&F neurons starting from the microscopical equations for a single neuron. 
This density dynamics allows a compuationaly efficient simulation of a whole pop
ulation of neurons. 

In future work we want to simulate a network of connected neuronal populations. 
In such a network of populations (indexed e.g. by x) , a self-consistent system of 
differential equations based on the population's p(x, t; i*) and A(x, t) emerges if 
we constrain ourselves to neuronal populations connected synaptically according to 
the constraints given by the pool definition [2]. In this case, two neurons i and j 
belong to pools x and y, if Wi,j = W(x, y). This allows us to write for the synaptic 
component of the membrane potential 

vsyn(x,t) = 2: W (x , y) 100 
ds'a(oo;s')A(y,t-s') 

y 0 

(24) 

Using the alpha-function a(oo ; s') as introduced in (6), and a "nice" response
function ~ for the input current time course after a spike, we can write eq. (24) 
using differential equations that use A(y, t) as input. This results in a system that 
is based entirely on differential equations and is very cheap to compute. 
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