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Abstract 

We consider the problem of measuring the eigenvalues of a ran­
domly drawn sample of points. We show that these values can be 
reliably estimated as can the sum of the tail of eigenvalues. Fur­
thermore, the residuals when data is projected into a subspace is 
shown to be reliably estimated on a random sample. Experiments 
are presented that confirm the theoretical results. 

1 Introduction 

A number of learning algorithms rely on estimating spectral data on a sample of 
training points and using this data as input to further analyses. For example in 
Principal Component Analysis (PCA) the subspace spanned by the first k eigen­
vectors is used to give a k dimensional model of the data with minimal residual, 
hence forming a low dimensional representation of the data for analysis or clus­
tering. Recently the approach has been applied in kernel defined feature spaces 
in what has become known as kernel-PCA [5]. This representation has also been 
related to an Information Retrieval algorithm known as latent semantic indexing, 
again with kernel defined feature spaces [2]. 

Furthermore eigenvectors have been used in the HITS [3] and Google's PageRank [1] 
algorithms. In both cases the entries in the eigenvector corresponding to the maxi­
mal eigenvalue are interpreted as authority weightings for individual articles or web 
pages. 

The use of these techniques raises the question of how reliably these quantities can 
be estimated from a random sample of data, or phrased differently, how much data is 
required to obtain an accurate empirical estimate with high confidence. Ng et al. [6] 
have undertaken a study of the sensitivity of the estimate of the first eigenvector to 
perturbations of the connection matrix. They have also highlighted the potential 
instability that can arise when two eigenvalues are very close in value, so that their 
eigenspaces become very difficult to distinguish empirically. 

The aim of this paper is to study the error in estimation that can arise from the 
random sampling rather than from perturbations of the connectivity. We address 



this question using concentration inequalities. We will show that eigenvalues esti­
mated from a sample of size m are indeed concentrated, and furthermore the sum 
of the last m - k eigenvalues is subject to a similar concentration effect, both re­
sults of independent mathematical interest . The sum of the last m - k eigenvalues 
is related to the error in forming a k dimensional PCA approximation, and hence 
will be shown to justify using empirical projection subspaces in such algorithms as 
kernel-PCA and latent semantic kernels. 

The paper is organised as follows. In section 2 we give the background results and 
develop the basic techniques that are required to derive the main results in section 
3. We provide experimental verification of the theoretical findings in section 4, 
before drawing our conclusions. 

2 Background and Techniques 

We will make use of the following results due to McDiarmid. Note that lEs is the 
expectation operator under the selection of the sample. 

TheoreIll 1 (McDiarmid!4}) Let Xl, ... ,Xn be independent random variables tak­
ing values in a set A, and assume that f : An -+~, and fi : An- l -+ ~ satisfy for 
l:::;i:::;n 

Xl,··· , Xn 

TheoreIll 2 (McDiarmid!4}) Let Xl, ... ,Xn be independent random variables tak­
ing values in a set A, and assume that f : An -+ ~, for 1 :::; i :::; n 

sup If(xI, ... , xn) - f(XI, ... , Xi- I, Xi, Xi+!,···, xn)1 :::; Ci, 

We will also make use of the following theorem characterising the eigenvectors of a 
symmetric matrix. 

TheoreIll 3 (Courant-Fischer MiniIllax TheoreIll) If M E ~mxm is symmet­
ric, then for k = 1, ... , m, 

v'Mv v'Mv 
Ak(M) = max min -- = min max 

dim(T) = k O#v ET vlv dim(T) = m - k+IO#v ET vlv ' 

with the extrama achieved by the corresponding eigenvector. 

The approach adopted in the proofs of the next section is to view the eigenvalues as 
the sums of squares of residuals. This is applicable when the matrix is positive semi­
definite and hence can be written as an inner product matrix M = XI X, where XI is 
the transpose of the matrix X containing the m vectors Xl, . . . , Xm as columns. This 
is the finite dimensional version of Mercer's theorem, and follows immediately if we 
take X = V VA, where M = VA VI is the eigenvalue decomposition of M. There 
may be more succinct ways of representing X, but we will assume for simplicity (but 
without loss of generality) that X is a square matrix with the same dimensions as 
M. To set the scene, we now present a short description of the residuals viewpoint. 



The starting point is the singular value decomposition of X = U~V', where U and 
V are orthonormal matrices and ~ is a diagonal matrix containing the singular 
values (in descending order). We can now reconstruct the eigenvalue decomposition 
of M = X' X = V~U'U~V' = V AV', where A = ~2. But equally we can construct 
a matrix N = XX' = U~V'V~U' = UAU' , with the same eigenvalues as M. 
As a simple example consider now the first eigenvalue, which by Theorem 3 and the 
above observations is given by 

A1(M) 
v'Nv v'XX'v 

max -- = max 
O,t:vEIR= v'v O,t:vEIR= v'v 

m m 

max 
O,t:vEIR = v'v 

m 

max L IIPv(xj)11 2 = L IIxjl12 - min L IIP;-(xj)112 
O,t:vEIR= O,t:vEIR= j=l j=l j=l 

where Pv(x) (Pv..l (x)) is the projection of x onto the space spanned by v (space 
perpendicular to v), since IIxI12 = IIPv(x)11 2 + IIPv..l(x)112. It follows that the first 
eigenvector is characterised as the direction for which sum of the squares of the 
residuals is minimal. 

Applying the same line of reasoning to the first equality of Theorem 3, delivers the 
following equality 

m 

Ak = max min L IlPv(xj)112. 
dim(V)= k O,t:vEV . J=l 

(1) 

Notice that this characterisation implies that if v k is the k-th eigenvector of N, then 
m 

Ak = L IlPvk (xj)112, (2) 
j=l 

which in turn implies that if Vk is the space spanned by the first k eigenvectors, 
then 

k m m m 

L Ai = L IIPVk (Xj) 112 = L IIXj W - L IIP'* (Xj) 112, (3) 
i=l j=l j=l j=l 

where Pv(x) (PV(x)) is the projection of x into the space V (space perpendicular 
to V). It readily follows by induction over the dimension of V that we can equally 
characterise the sum of the first k and last m - k eigenvalues by 

m m m 

i= l 

max L IIPv(xj)11 2 = L IIxjl12 - min L IIPv(xj)112, 
dim(V) = k . . dim(V) = k . J=l ) = 1 ) = 1 

m m k m 

L IIXjl12 - L Ai = min L IlPv(xj)112. 
. . dim(V)=k . J=l .=1 J=l 

(4) 

Hence, as for the case when k = 1, the subspace spanned by the first k eigenvalues 
is characterised as that for which the sum of the squares of the residuals is minimal. 
Frequently, we consider all of the above as occurring in a kernel defined feature 
space, so that wherever we have written Xj we should have put ¢>(Xj), where ¢> is 
the corresponding projection. 

3 Concentration of eigenvalues 

The previous section outlined the relatively well-known perspective that we now 
apply to obtain the concentration results for the eigenvalues of positive semi-definite 



matrices. The key to the results is the characterisation in terms of the sums of 
residuals given in equations (1) and (4). 

Theorem 4 Let K(x,z) be a positive semi-definite kernel function on a space X, 
and let J-t be a distribution on X. Fix natural numbers m and 1 :::; k < m and let 
S = (Xl"'" xm) E xm be a sample of m points drawn according to J-t. Th en for 
all f > 0, 

P{I~ )..k(S) -lEs [~ )..k(S)ll 2: f} :::; 2exp ( -~:m) , 
where )..k (S) is the k-th eigenvalue of the matrix K(S) with entries K(S)ij 
K(Xi,Xj) and R2 = maxxEx K(x,x). 

Proof: The result follows from an application of Theorem 1 provided 

1 1 2 
sup 1- )..k(S) - - )..k(S \ {xd)1 :::; Rim. 
s m m 

Let S = S \ {Xi} and let V (11) be the k dimensional subspace spanned by the first 
k eigenvectors of K(S) (K(S)). Using equation (1) we have 

m 

m 

D 

Surprisingly a very similar result holds when we consider the sum of the last m - k 
eigenvalues. 

Theorem 5 Let K(x, z) be a positive semi-definite kernel function on a space X, 
and let J-t be a distribution on X. Fix natural numbers m and 1 :::; k < m and let 
S = (Xl, ... , Xm) E xm be a sample of m points drawn according to J-t. Then for 
all f > 0, 

P{I~ )..>k(S) -lEs [~ )..>k(S)ll 2: f} :::; 2 exp ( -~:m) , 
where )..>k(S) is the sum of all but the largest k eigenvalues of the matrix K(S) with 
entries K(S)ij = K(Xi,Xj) and R2 = maxxEX K(x,x). 

Proof: The result follows from an application of Theorem 1 provided 

sup 1~)..>k(S) - ~)..>k(S \ {xd)1 :::; R2/m. 
s m m 

Let S = S \ {xd and let V (11) be the k dimensional subspace spanned by the first 
k eigenvectors of K(S) (K(S)). Using equation (4) we have 

m 

j=l #i 
m 

#i j=l 

D 



Our next result concerns the concentration of the residuals with respect to a fixed 
subspace. For a subspace V and training set S , we introduce the notation 

1 m 
Fv(S) = - L IIPV(Xi )112 . 

m i=l 

TheoreIll 6 Let J-t be a distribution on X. Fix natural numbers m and a subspace 
V and let S = (Xl, .. . ,Xm) E xm be a sample of m points drawn according to J-t. 
Then for all t > 0, 

P{IFv(S) -lEs [Fv(S)ll ~ t} ::::: 2exp (~~r;) . 
Proof: The result follows from an application of Theorem 2 provided 

sup IFv(S) - F(S \ {xd U {xi)1 ::::: R2/m. 
S,Xi 

Clearly the largest change will occur if one of the points Xi and Xi is lies in the 
subspace V and the other does not. In this case the change will be at most R2/m. 
D 

4 Experiments 

In order to test the concentration results we performed experiments with the Breast 
cancer data using a cubic polynomial kernel. The kernel was chosen to ensure that 
the spectrum did not decay too fast. 

We randomly selected 50% of the data as a 'training' set and kept the remaining 
50% as a 'test' set. We centered the whole data set so that the origin of the feature 
space is placed at the centre of gravity of the training set. We then performed an 
eigenvalue decomposition of the training set. The sum of the eigenvalues greater 
than the k-th gives the sum of the residual squared norms of the training points 
when we project onto the space spanned by the first k eigenvectors. Dividing this by 
the average of all the eigenvalues (which measures the average square norm of the 
training points in the transformed space) gives a fraction residual not captured in 
the k dimensional projection. This quantity was averaged over 5 random splits and 
plotted against dimension in Figure 1 as the continuous line. The error bars give 
one standard deviation. The Figure la shows the full spectrum, while Figure 1 b 
shows a zoomed in subwindow. The very tight error bars show clearly the very tight 
concentration of the sums of tail of eigenvalues as predicted by Theorem 5. 

In order to test the concentration results for subsets we measured the residuals of 
the test points when they are projected into the subspace spanned by the first k 
eigenvectors generated above for the training set. The dashed lines in Figure 1 show 
the ratio of the average squares of these residuals to the average squared norm of the 
test points. We see the two curves tracking each other very closely, indicating that 
the subspace identified as optimal for the training set is indeed capturing almost 
the same amount of information in the test points. 

5 Conclusions 

The paper has shown that the eigenvalues of a positive semi-definite matrix gener­
ated from a random sample is concentrated. Furthermore the sum of the last m - k 
eigenvalues is similarly concentrated as is the residual when the data is projected 
into a fixed subspace. 
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Figure 1: Plots ofthe fraction of the average squared norm captured in the subspace 
spanned by the first k eigenvectors for different values of k. Continuous line is 
fraction for training set, while the dashed line is for the test set. (a) shows the full 
spectrum, while (b) zooms in on an interesting portion. 



Experiments are presented that confirm the theoretical predictions on a real world 
dataset. The results provide a basis for performing PCA or kernel-PCA from a 
randomly generated sample, as they confirm that the subset identified by the sample 
will indeed 'generalise' in the sense that it will capture most of the information in 
a test sample. 

Further research should look at the question of how the space identified by a sub­
sample relates to the eigenspace of the underlying kernel operator. 
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