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Abstract 

In this paper we introduce new algorithms for unsupervised learn­
ing based on the use of a kernel matrix. All the information re­
quired by such algorithms is contained in the eigenvectors of the 
matrix or of closely related matrices. We use two different but re­
lated cost functions, the Alignment and the 'cut cost'. The first 
one is discussed in a companion paper [3], the second one is based 
on graph theoretic concepts. Both functions measure the level of 
clustering of a labeled dataset, or the correlation between data clus­
ters and labels. We state the problem of unsupervised learning as 
assigning labels so as to optimize these cost functions. We show 
how the optimal solution can be approximated by slightly relaxing 
the corresponding optimization problem, and how this corresponds 
to using eigenvector information. The resulting simple algorithms 
are tested on real world data with positive results. 

1 Introduction 

Kernel based learning provides a modular approach to learning system design [2]. A 
general algorithm can be selected for the appropriate task before being mapped onto 
a particular application through the choice of a problem specific kernel function. 

The kernel based method works by mapping data to a high dimensional feature 
space implicitly defined by the choice of the kernel function. The kernel function 
computes the inner product of the images of two inputs in the feature space. From 
a practitioners viewpoint this function can also be regarded as a similarity measure 
and hence provides a natural way of incorporating domain knowledge about the 
problem into the bias of the system. 

One important learning problem is that of dividing the data into classes according 
to a cost function together with their relative positions in the feature space. We 
can think of this as clustering in the kernel defined feature space, or non-linear 
clustering in the input space. 

In this paper we introduce two novel kernel-based methods for clustering. They both 
assume that a kernel has been chosen and the kernel matrix constructed. The meth­
ods then make use of the matrix's eigenvectors, or of the eigenvectors of the closely 
related Laplacian matrix, in order to infer a label assignment that approximately 
optimizes one of two cost functions . See also [4] for use of spectral decompositions 
of the kernel matrix. The paper includes some analysis of the algorithms together 
with tests of the methods on real world data with encouraging results. 



2 Two partition cost measures 

All the information needed to specify a clustering of a set of data is contained in 
the matrix Mij = (cluster(xi) == cluster(xj)), where (A == B) E {-I, +1}. After 
a clustering is specified, one can measure its cost in many ways. We propose here 
two cost functions that are easy to compute and lead to efficient algorithms. 

Learning is possible when some collusion between input distribution and target 
exists, so that we can predict the target based on the input. Typically one would 
expect points with similar labels to be clustered and the clusters to be separated. 

This can be detected in two ways: either by measuring the amount of label-clustering 
or by measuring the correlation between such variables. In the first case, we need 
to measure how points of the same class are close to each other and distant from 
points of different classes. In the second case, kernels can be regarded as oracles 
predicting whether two points are in the same class. The 'true' oracle is the one 
that knows the true matrix M. A measure of quality can be obtained by measuring 
the Pearson correlation coefficient between the kernel matrix K and the true M . 
Both approaches lead to the same quantity, known as the alignment [3]. 

We will use the following definition of the inner product between matrices 
(K1 ,K2)F = 2:2j=1 K 1 (Xi,Xj)K2(Xi,Xj). The index F refers to the Frobenius 
norm that corresponds to this inner product. 

Definition 1 Alignment The (empirical) alignment of a kernel kl with a kernel 
k2 with respect to the sample S is the quantity 

...1(S,k1 ,k2) = (K1 ,K2)F , 
yi(K1 ,K1 )F(K2,K2)F 

where Ki is the kernel matrix for the sample S using kernel ki . 

This can also be viewed as the cosine of the angle between to bi-dimensional vectors 
Kl and K 2, representing the Gram matrices. If we consider k2 = yy', where y is 
the vector of { -1, + I} labels for the sample, then with a slight abuse of notation 

AA(Sk)= (K,yy')F (K,yY')F. (") 2 
, ,y / = mllKllF ' smce yy,yy F = m 

V (K, K) F (YY' , yy') F 

Another measure of separation between classes is the average separation between 
two points in different classes, again normalised by the matrix norm. 

Definition 2 Cut Cost. The cut cost of a clustering is defined as 

"' .. -t- k(Xi XJ) 
C(S, k, y) = L..'J:Y;li~IIF' . 

This quantity is motivated by a graph theoretic concept. If we consider the Kernel 
matrix as the adjacency matrix of a fully connected weighted graph whose nodes 
are the data points, the cost of partitioning a graph is given by the total weight of 
the edges that one needs to cut or remove, and is exactly the numerator of the 'cut 
cost'. Notice also the relation between alignment and cutcost: 

'" k(x· x·) - 2C(S k) 
L..ij " J , = T(S k) - 2C(S k ) 

myi(K, K)F ' , ,y, 
...1(S, k, y) 

where T(S,k) = ...1(S, k,j), for j the all ones vector. Among other appealing 
properties of the alignment, is that this quantity is sharply concentrated around 



its mean, as proven in the companion paper [3]. This shows that the expected 
alignment can be reliably estimated from its empirical estimate A.(S). As the cut 
cost can be expressed as the difference of two alignments 

C(S,k,y) = O.5(T(S,k) - A.(S, k,y)), (1) 

it will be similarly concentrated around its expected value. 

3 Optimising the cost with spectral techniques 

In this section we will introduce and test two related methods for clustering, as 
well as their extensions to transduction. The general problem we want to solve is 
to assign class-labels to datapoints so as to maximize one of the two cost functions 
given above. By equation (1) the optimal solution to both problems is identical for 
a fixed data set and kernel. The difference between the approaches is in the two 
approximation algorithms developed for the different cost functions. The approxi­
mation algorithms are obtained by relaxing the discrete problems of optimising over 
all possible labellings of a dataset to closely related continuous problems solved by 
eigenvalue decompositions. See [5] for use of eigenvectors in partitioning sparse 
matrices. 

3.1 Optimising the alignment 

To optimise the alignment, the problem is to find the maximally aligned set of labels 

A A (K,yy')F 
A*(S,k)= max A(S,k,y)= max 

yE{ -1 ,1}= yE{ -l ,l}= mJ(K, K)F 

Since in this setting the kernel is fixed maximising the alignment reduces to choos­
ing y E {-I, l}m to maximise (K,yy') = y'Ky. If we allow y to be chosen from 
the larger set IRm subject to the constraint IIyl12 = m, we obtain an approximate 
maximum-alignment problem that can be solved efficiently. After solving the re­
laxed problem, we can obtain an approximate discrete solution by choosing a suit­
able threshold to the entries in the vector y and applying the sign function. Bounds 
will be given on the quality of the approximations. 

The solution of the approximate problem follows from the following theorem that 
provides a variational characterization of the spectrum of symmetric matrices. 

Theorem 3 (Courant-Fischer Minimax Theorem) If ME IRmxm is symmet­
ric, then for k = 1, ... , m, 

v'Mv v'Mv 
Ak(M) = max min -- = min max --, 

dirn(T)=k OopvET v'v dirn(T)=m - k+lOopvET v'v 

If we consider the first eigenvector, the first min does not apply and we obtain that 
the approximate alignment problem is solved by the first eigenvector, so that the 
maximal alignment is upper bounded by a multiple of the first eigenvalue, Arnax = 
maxOopv EIR= v:~v. One can now transform the vector v into a vector in {-I, +l}m 
by choosing the threshold 8 that gives maximum alignment of y = sign(vrnaX - 8). 

By definition, the value of alignment A.(S, k, y) obtained by this y will be a lower 
bound of the optimal alignment, hence we have 

A.(S,k,y):s A.*(S,k):S Amax/IIKIIF. 

One can hence estimate the quality of a dichotomy by comparing its value with the 
upper bound. The absolute alignment tells us how specialized a kernel is on a given 
dataset: the higher this quantity, the more committed to a specific dichotomy. 



The first eigenvector can be calculated in many ways, for example the Lanczos 
procedure, which is already effective for large datasets. Search engines like Google 
are based on estimating the first eigenvector of a matrix with dimensionality more 
than 109 , so for very large datasets there are approximation techniques. 

We applied the procedure outlined above to two datasets from the VCI repository. 
We preprocessed the data by normalising the input vectors in the kernel defined 
feature space and then centering them by shifting the origin (of the feature space) 
to their centre of gravity. This can be achieved by the following transformation of 
the kernel matrix, K +--- K - m - 1jg' - m - 1gj' + m - 2 j'KjJ, where j is the all 
ones vector, J the all ones matrix and 9 the vector of row sums of K. 

Eigenvalue Number 

(a) (b) 
Figure 1: (a) Plot of alignment of the different eigenvectors with the labels or­
dered by increasing eigenvalue. (b) Plot for Breast Cancer data (linear kernel) of 
.Amax/llKIIF (straight line), ...1(S, k, y) for y = sign(vmaX - (}i ) (bottom curve), and 
the accuracy of y (middle curve) against threshold number i. 

The first experiment applied the unsupervised technique to the Breast Cancer data 
with a linear kernel. Figure l(a) shows the alignmment of the different eigenvectors 
with the labels. The highest alignment is shown by the last eigenvector correspond­
ing to the largest eigenvalue. 

For each value (}i of the threshold Figure l(b) shows the upper bound of .Amax/llKIIF 
(straight line), the alignment ...1(S, k, y) for y = sign( vmax - (}i) (bottom curve), and 
the accuracy of y (middle curve). Notice that where actual alignment and upper 
bound on alignment get closest, we have confidence that we have partitioned our 
data well, and in fact the accuracy is also maximized. Notice also that the choice of 
the threshold corresponds to maintaining the correct proportion between positives 
and negatives. This suggests another possible threshold selection strategy, based on 
the availability of enough labeled points to give a good estimate of the proportion 
of positive points in the dataset. This is one way label information can be used 
to choose the threshold. At the end of the experiments we will describe another 
'transduction' method. 

It is a measure of how naturally the data separates that t his procedure is able 
to optimise the split with an accuracy of approximately 97.29% by choosing the 
threshold that maximises the alignment (threshold number 435) but without making 
any use of the labels. 

In Figure 2a we present the same results for the Gaussian kernel (u = 6). In this 
case the accuracy obtained by optimising the alignment (threshold number 316) 
of the resulting dichotomy is less impressive being only about 79.65%. Finally, 
Figure 2b shows the same results for the Ionosphere dataset. Here the accuracy 
of the split that optimises the alignment (threshold number 158) is approximately 



(a) (b) 

Figure 2: Plot for Breast Cancer data (Gaussian kernel) (a) and Ionosphere data 
(linear kernel) (b) of Amax/ilKIIF (straight line), .4(S, k, y) for y = sign(vmaX - ()i) 
(bottom curve), and the accuracy of y (middle curve) against threshold number i. 

71.37%. 

We can also use the overall approach to adapt the kernel to the data. For example 
we can choose the kernel parameters so as to optimize Amax/IIKIIF. Then find 
the first eigenvector, choose a threshold to maximise the alignment and output the 
corresponding y. 

The cost to the alignment of changing a label Yi is 2 Lj Yjk(Xi' xj)/IIKIIF , so that 
if a point is isolated from the others, or if it is equally close to the two different 
classes, then changing its label will have only a very small effect. On the other 
hand, labels in strongly clustered points clearly contribute to the overall cost and 
changing their label will alter the alignment significantly. 

The method we have described can be viewed as projecting the data into a 1-
dimensional space and finding a threshold. The projection also implicitly sorts the 
data so that points of the same class are nearby in the ordering. We discuss the 
problem in the 2-class case. We consider embedding the set into the real line, so 
as to satisfy a clustering criterion. The resulting Kernel matrix should appear as a 
block diagonal matrix. 

This problem has been addressed in the case of information retrieval in [1], and 
also applied to assembling sequences of DNA. In those cases, the eigenvectors of the 
Laplacian have been used, and the approach is called the Fiedler ordering. Although 
the Fiedler ordering could be used here as well, we present here a variation based 
on the simple kernel matrix. 

Let the coordinate ofthe point Xi on the real line be v(i). Consider the cost function 
Lij v(i)v(j)K(i,j). It is maximized when points with high similarity have the same 
sign and high absolute value, and when points with different sign have low similarity. 

The choice of coordinates v that optimizes this cost is the first eigenvector, and 
hence by sorting the data according to the value of their entry in this eigenvector 
one can hope to find a good permutation, that renders the kernel matrix block 
diagonal. Figure 3 shows the results of this heuristic applied to the Breast cancer 
dataset. The grey level indicates the size of the kernel entry. The figure on the left 
is for the unsorted data, while that on the right shows the same plot after sorting. 
The sorted figure clearly shows the effectivenesss of the method. 

3.2 Optimising the cut-cost 

For a fixed kernel matrix minimising the cut-cost corresponds to mlmmlsmg 
Ly;#y; k( Xi, X j), that is the sum of the kernel entries between points of two dif-



Figure 3: Gram matrix for cancer data, before and after permutation of data ac­
cording to sorting order of first eigenvector of K 

ferent classes. Since we are dealing with normalized kernels, this also controls the 
expected distance between them. ( ) 

"'"' 1",", ' 1 , We can express this quantity as ~ Kij ="2 ~ Kij - Y Ky ="2Y Ly, 
ydy; i,j 

where L is the Laplacian matrix, defined as L = D-K, where D = diag(dl , ... , dm ) 

with di = '£';1 k(Xi , Xj). One would like to find y E {-l,+l}m so as to minimize 
the cut cost subject to the division being even, but this problem is NP-hard. Fol­
lowing the same strategy as with the alignment we can impose a slightly looser 
constraint on y, y E Rm, '£i yt = m, l:i Yi = O. This gives the problem 

min y' Ly subject to y E Rm , l: yt = m, l: Yi = O. 

Since, zero is an eigenvalue of L with eigenvector j, the all ones vector, the problem 
is equivalent to finding the eigenvector of the smallest non-zero eigenvalue ..\ 
minO#y l..j y/yY. Hence, this eigenvalue ..\ provides a lower bound on the cut cost 

. ..\ 
mm C(S, k, y) ~ IIKII . 

y E { - l,l}'" 2 F 

So the eigenvector corresponding to the eigenvalue ..\ of the Laplacian can be used 
to obtain a good approximate split and ..\ gives a lower bound on the cut-cost. One 
can now threshold the entries of the eigenvector in order to obtain a vector with 
-1 and + 1 entries. We again plot the lower bound, cut-cost, and error rate as a 
function of the threshold. 

We applied the procedure to the Breast cancer data with both linear and Gaussian 
kernels. The results are shown in Figure 4. Now using the cut cost to select 
the best threshold for the linear kernel sets it at 378 with an accuracy of 67.86%, 
significantly worse than the results obtained by optimising the alignment. With 
the Gaussian kernel, on the other hand, the method selects threshold 312 with an 
accuracy of 80.31 %, a slight improvement over the results obtained with this kernel 
by optimising the alignment. 

So far we have presented algorithms that use unsupervised data. We now consider 
the situation where we are given a partially labelled dataset. This leads to a sim­
ple algorithm for transduction or semi-supervised learning. The idea that some 
labelled data might improve performance comes from observing Figure 4b, where 
the selection based on the cut-cost is clearly suboptimal. By incorporating some 
label information, it is hoped that we can obtain an improved threshold selection. 
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(a) (b) 
Figure 4: Plot for Breast Cancer data using (a) Linear kernel) and (b) Gaussian 
kernel of C(S,k,y) - ,X/(21IKIIF) (dashed curves), for y = sign(vmaX - ()i) and the 
error of y (solid curve) against threshold number i. 

Let z be the vector containing the known labels and 0 elsewhere. Set K P = 
K + Cozz', where Co is a positive constant parameter. We now use the original 
matrix K to generate the eigenvector, but the matrix K P when measuring the 
cut-cost of the classifications generated by different thresholds. Taking Co = 1 
we performed 5 random selections of 20% of the data and obtained a mean success 
rate of 85.56% (standard deviation 0.67%) for the Breast cancer data with Gaussian 
kernel, a marked improvement over the 80.31 % achieved with no label information. 

4 Conclusions 

The paper has considered two partition costs the first derived from the so-called 
alignment of a kernel to a label vector, and the second from the cut-cost of a label 
vector for a given kernel matrix. The two quantities are both optimised by the 
same labelling, but give rise to different approximation algorithms when the discrete 
constraint is removed from the labelling vector. It was shown how these relaxed 
problems are solved exactly using spectral techniques, hence leading to two distinct 
approximation algorithms through a post-processing phase that re-discretises the 
vector to create a labelling that is chosen to optimise the given criterion. 
Experiments are presented showing the performance of both of these clustering 
techniques with some very striking results. For the second algorithm we also gave 
one preliminary experiment with a transductive version that enables some labelled 
data to further refine the clustering. 
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