
Predictive Representations of State

Michael L. Littman
Richard S. Sutton

AT&T Labs-Research, Florham Park, New Jersey
{mlittman,sutton}~research.att.com

Satinder Singh
Syntek Capital, New York, New York

baveja~cs.colorado.edu

Abstract

We show that states of a dynamical system can be usefully repre
sented by multi-step, action-conditional predictions of future ob
servations. State representations that are grounded in data in this
way may be easier to learn, generalize better, and be less depen
dent on accurate prior models than, for example, POMDP state
representations. Building on prior work by Jaeger and by Rivest
and Schapire, in this paper we compare and contrast a linear spe
cialization of the predictive approach with the state representa
tions used in POMDPs and in k-order Markov models. Ours is the
first specific formulation of the predictive idea that includes both
stochasticity and actions (controls). We show that any system has
a linear predictive state representation with number of predictions
no greater than the number of states in its minimal POMDP model.

In predicting or controlling a sequence of observations, the concepts of state and
state estimation inevitably arise. There have been two dominant approaches. The
generative-model approach, typified by research on partially observable Markov de
cision processes (POMDPs), hypothesizes a structure for generating observations
and estimates its state and state dynamics. The history-based approach, typified by
k-order Markov methods, uses simple functions of past observations as state, that is,
as the immediate basis for prediction and control. (The data flow in these two ap
proaches are diagrammed in Figure 1.) Of the two, the generative-model approach
is more general. The model's internal state gives it temporally unlimited memory
the ability to remember an event that happened arbitrarily long ago--whereas a
history-based approach can only remember as far back as its history extends. The
bane of generative-model approaches is that they are often strongly dependent on a
good model of the system's dynamics. Most uses of POMDPs, for example, assume
a perfect dynamics model and attempt only to estimate state. There are algorithms
for simultaneously estimating state and dynamics (e.g., Chrisman, 1992), analogous
to the Baum-Welch algorithm for the uncontrolled case (Baum et al., 1970), but
these are only effective at tuning parameters that are already approximately cor
rect (e.g., Shatkay & Kaelbling, 1997).





observations
(and actions)

(a)

state
1-----1-----1..-

rep'n

observations¢E
(and actions) / state

t/' rep'n
1-step --+ .
delays

(b)

Figure 1: Data flow in a) POMDP and other recursive updating of state represen
tation, and b) history-based state representation.

In practice, history-based approaches are often much more effective. Here, the state
representation is a relatively simple record of the stream of past actions and ob
servations. It might record the occurrence of a specific subsequence or that one
event has occurred more recently than another. Such representations are far more
closely linked to the data than are POMDP representations. One way of saying
this is that POMDP learning algorithms encounter many local minima and saddle
points because all their states are equipotential. History-based systems immedi
ately break symmetry, and their direct learning procedure makes them comparably
simple. McCallum (1995) has shown in a number of examples that sophisticated
history-based methods can be effective in large problems, and are often more prac
tical than POMDP methods even in small ones.

The predictive state representation (PSR) approach, which we develop in this paper,
is like the generative-model approach in that it updates the state representation
recursively, as in Figure l(a), rather than directly computing it from data. We
show that this enables it to attain generality and compactness at least equal to
that of the generative-model approach. However, the PSR approach is also like the
history-based approach in that its representations are grounded in data. Whereas a
history-based representation looks to the past and records what did happen, a PSR
looks to the future and represents what will happen. In particular, a PSR is a vector
of predictions for a specially selected set of action-observation sequences, called tests
(after Rivest & Schapire, 1994). For example, consider the test U101U202, where U1

and U2 are specific actions and 01 and 02 are specific observations. The correct
prediction for this test given the data stream up to time k is the probability of its
observations occurring (in order) given that its actions are taken (in order) (i.e.,
Pr {Ok = 01, Ok+1 = 02 I A k = u1,Ak+ 1 = U2}). Each test is a kind of experiment
that could be performed to tell us something about the system. If we knew the
outcome of all possible tests, then we would know everything there is to know
about the system. A PSR is a set of tests that is sufficient information to determine
the prediction for all possible tests (a sufficient statistic).

As an example of these points, consider the float/reset problem (Figure 2) consisting
of a linear string of 5 states with a distinguished reset state on the far right. One
action, f (float), causes the system to move uniformly at random to the right or
left by one state, bounded at the two ends. The other action, r (reset), causes a
jump to the reset state irrespective of the current state. The observation is always
ounless the r action is taken when the system is already in the reset state, in which
case the observation is 1. Thus, on an f action, the correct prediction is always 0,
whereas on an r action, the correct prediction depends on how many fs there have
been since the last r: for zero fS, it is 1; for one or two fS, it is 0.5; for three or
four fS, it is 0.375; for five or six fs, it is 0.3125, and so on decreasing after every
second f, asymptotically bottoming out at 0.2.

No k-order Markov method can model this system exactly, because no limited-.





.5

a) float action

.5

b) reset action

1,0=1

Figure 2: Underlying dynamics of the float/reset problem for a) the float action and
b) the reset action. The numbers on the arcs indicate transition probabilities. The
observation is always 0 except on the reset action from the rightmost state, which
produces an observation of 1.

length history is a sufficient statistic. A POMDP approach can model it exactly by
maintaining a belief-state representation over five or so states. A PSR, on the other
hand, can exactly model the float/reset system using just two tests: rl and fOrI.
Starting from the rightmost state, the correct predictions for these two tests are al
ways two successive probabilities in the sequence given above (1, 0.5, 0.5, 0.375,...),
which is always a sufficient statistic to predict the next pair in the sequence. Al
though this informational analysis indicates a solution is possible in principle, it
would require a nonlinear updating process for the PSR.

In this paper we restrict consideration to a linear special case of PSRs, for which
we can guarantee that the number of tests needed does not exceed the number
of states in the minimal POMDP representation (although we have not ruled out
the possibility it can be considerably smaller). Of greater ultimate interest are the
prospects for learning PSRs and their update functions, about which we can only
speculate at this time. The difficulty of learning POMDP structures without good
prior models are well known. To the extent that this difficulty is due to the indirect
link between the POMDP states and the data, predictive representations may be
able to do better.

Jaeger (2000) introduced the idea of predictive representations as an alternative
to belief states in hidden Markov models and provided a learning procedure for
these models. We build on his work by treating the control case (with actions),
which he did not significantly analyze. We have also been strongly influenced by
the work of Rivest and Schapire (1994), who did consider tests including actions,
but treated only the deterministic case, which is significantly different. They also
explored construction and learning algorithms for discovering system structure.

1 Predictive State Representations

We consider dynamical systems that accept actions from a discrete set A and gener
ate observations from a discrete set O. We consider only predicting the system, not
controlling it, so we do not designate an explicit reward observation. We refer to
such a system as an environment. We use the term history to denote a test forming
an initial stream of experience and characterize an environment by a probability dis
tribution over all possible histories, P : {OIA}* H- [0,1], where P(Ol··· Otl a1··· at)
is the probability of observations 01, ... , O£ being generated, in that order, given that
actions aI, ... ,at are taken, in that order. The probability of a test t conditional
on a history h is defined as P(tlh) = P(ht)/P(h). Given a set of q tests Q = {til,
we define their (1 x q) prediction vector, p(h) = [P(t1Ih),P(t2Ih), ... ,P(tqlh)], as a
predictive state representation (PSR) if and only if it forms a sufficient statistic for
the environment, Le., if and only if

P(tlh) = ft(P(h)), (1)





for any test t and history h, and for some projection junction ft : [0, l]q ~ [0,1]. In
this paper we focus on linear PSRs, for which the projection functions are linear,
that is, for which there exist a (1 x q) projection vector mt, for every test t, such
that

P(tlh) == ft(P(h)) =7 p(h)mf, (2)
for all histories h.

Let Pi(h) denote the ith component of the prediction vector for some PSR. This
can be updated recursively, given a new action-observation pair a,o, by

(3).(h ) == P(t.lh ) == P(otil ha) == faati(P(h)) == p(h)m'{;ati
P2 ao 2 ao P(olha) faa (P(h)) p(h)mro '

where the last step is specific to linear PSRs. We can now state our main result:

Theorem 1 For any environment that can be represented by a finite POMDP
model, there exists a linear PSR with number of tests no larger than the number of
states in the minimal POMDP model.

2 Proof of Theorem 1: Constructing a PSR from a POMDP

We prove Theorem 1 by showing that for any POMDP model of the environment,
we can construct in polynomial time a linear PSR for that POMDP of lesser or
equal complexity that produces the same probability distribution over histories as
the POMDP model.

We proceed in three steps. First, we review POMDP models and how they assign
probabilities to tests. Next, we define an algorithm that takes an n-state POMDP
model and produces a set of n or fewer tests, each of length less than or equal to
n. Finally, we show that the set of tests constitute a PSR for the POMDP, that is,
that there are projection vectors that, together with the tests' predictions, produce
the same probability distribution over histories as the POMDP.

A POMDP (Lovejoy, 1991; Kaelbling et al., 1998) is defined by a sextuple
(8, A, 0, bo,T, 0). Here, 8 is a set of n underlying (hidden) states, A is a dis
crete set of actions, and 0 is a discrete set of observations. The (1 x n) vector bo is
an initial state distribution. The set T consists of (n x n) transition matrices Ta,
one for each action a, where Tlj is the probability of a transition from state i to j
when action a is chosen. The set 0 consists of diagonal (n x n) observation matrices
oa,o, one for each pair of observation 0 and action a, where o~'o is the probability
of observation 0 when action a is selected and state i is reached. l

The state representation in a POMDP (Figure l(a)) is the belief state-the (1 x n)
vector of the state-occupation probabilities given the history h. It can be computed
recursively given a new action a and observation 0 by

b(h)Taoa,o
b(hao) = b(h)Taoa,oe;'

where en is the (1 x n)-vector of all Is.

Finally, a POMDP defines a probability distribution over tests (and thus histories)
by

P(Ol ... otlhal ... at) == b(h)Ta1oal,Ol ... Taloa£,Ole~. (4)

IThere are many equivalent formulations and the conversion procedure described here
can be easily modified to accommodate other POMDP definitions.





We now present our algorithm for constructing a PSR for a given POMDP. It
uses a function u mapping tests to (1 x n) vectors defined recursively by u(c) ==
en and u(aot) == (Taoa,ou(t)T)T, where c represents the null test. Conceptually,
the components of u(t) are the probabilities of the test t when applied from each
underlying state of the POMDP; we call u(t) the outcome vector for test t. We say
a test t is linearly independent of a set of tests S if its outcome vector is linearly
independent of the set of outcome vectors of the tests in S. Our algorithm search
is used and defined as

Q -<- search(c, {})

search(t, S):
for each a E A, 0 E 0

if aot is linearly independent of S
then S -<- search(aot, S U {aot})

return S

The algorithm maintains a set of tests and searches for new tests that are linearly
independent of those already found. It is a form of depth-first search. The algorithm
halts when it checks all the one-step extensions of its tests and finds none that are
linearly independent. Because the set of tests Q returned by search have linearly
independent outcome vectors, the cardinality of Q is bounded by n, ensuring that
the algorithm halts after a polynomial number of iterations. Because each test in
Q is formed by a one-step extension to some other test in Q, no test is longer than
n action-observation pairs.

The check for linear independence can be performed in many ways, including Gaus
sian elimination, implying that search terminates in polynomial time.

By construction, all one-step extensions to the set of tests Q returned by search
are linearly dependent on those in Q. We now show that this is true for any test.

Lemma 1 The outcome vectors of the tests in Q can be linearly combined to produce
the outcome vector for any test.

Proof: Let U be the (n x q) matrix formed by concatenating the outcome vectors
for all tests in Q. Since, for all combinations of a and 0, the columns of Taoa,ou
are linearly dependent on the columns of U, we can write Taoa,ou == UWT for
some q x q matrix of weights W.

If t is a test that is linearly dependent on Q, then anyone-step extension of t, aot,
is linearly dependent on Q. This is because we can write the outcome vector for t
as u(t) == (UwT)T for some (1 x q) weight vector w and the outcome vector for aot
as u(aot) == (Taoa,ou(t)T)T == (Taoa,oUwT)T == (UWTwT)T. Thus, aot is linearly
dependent on Q.

Now, note that all one-step tests are linearly dependent on Q by the structure of
the search algorithm. Using the previous paragraph as an inductive argument, this
implies that all tests are linearly dependent on Q. 0

Returning to the float/reset example POMDP, search begins with by enumerating
the 4 extensions to the null test (fO, fl, rO, and rl). Of these, only fa and rO
are are linearly independent. Of the extensions of these, fOrO is the only one that
is linearly independent of the other two. The remaining two tests added to Q by
search are fOfOrO and fOfOfOrO. No extensions of the 5 tests in Q are linearly
independent of the 5 tests in Q, so the procedure halts.





We now show that the set of tests Q constitute a PSR for the POMDP by con
structing projection vectors that, together with the tests' predictions, produce the
same probability distribution over histories as the POMDP.

For each combination of a and 0, define a q x q matrix Mao == (U+Taoa,ou)T and
a 1 x q vector mao == (U+Taoa,oe;;JT , where U is the matrix of outcome vectors
defined in the previous section and U+ is its pseudoinverse2 • The ith row of Mao is
maoti. The probability distribution on histories implied by these projection vectors
is

p(h)m~101 alOl

p(h)M~ol M~_10l_1 m~Ol

b(h)UU+ra1 oa1,01 U ... U+Tal-10al-1,Ol-1 UU+Taloal,ol e;
b(h)Ta1 0 a1,01 ... ral-l0al-t,ol-lTaloal,Ole~,

Le., it is the same as that of the POMDP, as in Equation 4. Here, the last step uses
the fact that UU+vT == vT for vT linearly dependent on the columns of U. This
holds by construction of U in the previous section.

This completes the proof of Theorem 1.

Completing the float/reset example, consider the Mf,o matrix found by the process
defined in this section. It derives predictions for each test in Q after taking action f.
Most of these are quite simple because the tests are so similar: the new prediction
for rO is exactly the old prediction for fOrO, for example. The only non trivial test
is fOfOfOrO. Its outcome can be computed from 0.250 p(rOlh) - 0.0625 p(fOrOlh) +
0.750 p(fOfOrOlh). This example illustrates that the projection vectors need not
contain only positive entries.

3 Conclusion

We have introduced a predictive state representation for dynamical systems that
is grounded in actions and observations and shown that, even in its linear form, it
is at least as general and compact as POMDPs. In essence, we have established
PSRs as a non-inferior alternative to POMDPs, and suggested that they might have
important advantages, while leaving demonstration of those advantages to future
work. We conclude by summarizing the potential advantages (to be explored in
future work):

Learnability. The k-order Markov model is similar to PSRs in that it is entirely
based on actions and observations. Such models can be learned trivially from data
by counting-it is an open question whether something similar can be done with a
PSR. Jaeger (2000) showed how to learn such a model in the uncontrolled setting,
but the situation is more complex in the multiple action case since outcomes are
conditioned on behavior, violating some required independence assumptions.

Compactness. We have shown that there exist linear PSRs no more complex that
the minimal POMDP for an environment, but in some cases the minimal linear PSR
seems to be much smaller. For example, a POMDP extension of factored MDPs ex
plored by Singh and Cohn (1998) would be cross-products of separate POMDPs and
have linear PSRs that increase linearly with the number and size of the component
POMDPs, whereas their minimal POMDP representation would grow as the size

2If U = A~BT is the singular value decomposition of U, then B:E+AT is the pseudoin
verse. The pseudoinverse of the diagonal matrix }J replaces each non-zero element with its
reciprocal.





of the state space, Le., exponential in the number of component POMDPs. This
(apparent) advantage stems from the PSR's combinatorial or factored structure.
As a vector of state variables, capable of taking on diverse values, a PSR may be
inherently more powerful than the distribution over discrete states (the belief state)
of a POMDP. We have already seen that general PSRs can be more compact than
POMDPs; they are also capable of efficiently capturing environments in the diver
sity representation used by Rivest and Schapire (1994), which is known to provide
an extremely compact representation for some environments.

Generalization. There are reasons to think that state variables that are themselves
predictions may be particularly useful in learning to make other predictions. With
so many things to predict, we have in effect a set or sequence of learning problems, all
due to the same environment. In many such cases the solutions to earlier problems
have been shown to provide features that generalize particularly well to subsequent
problems (e.g., Baxter, 2000; Thrun & Pratt, 1998).

Powerful, extensible representations. PSRs that predict tests could be gener
alized to predict the outcomes of multi-step options (e.g., Sutton et al., 1999). In
this case, particularly, they would constitute a powerful language for representing
the state of complex environments.

AcknowledgIllents: We thank Peter Dayan, Lawrence Saul, Fernando Pereira and
Rob Schapire for many helpful discussions of these and related ideas.

References

Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov chains. Annals
of Mathematical Statistics, 41, 164-171.

Baxter, J. (2000). A model of inductive bias learning. Journal of Artificial Intelligence
Research, 12, 149-198.

Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach. Proceedings of the Tenth National Conference on Artificial Intel
ligence (pp. 183-188). San Jose, California: AAAI Press.

Jaeger, H. (2000). Observable operator models for discrete stochastic time series. Neural
Computation, 12, 1371-1398.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in '
partially observable stochastic domains. Artificial Intelligence, 101, 99-134.

Lovejoy, W. S. (1991). A survey of algorithmic methods for partially observable Markov
decision processes. Annals of Operations Research, 28, 47-65.

McCallum, A. K. (1995). Reinforcement learning with selective perception and hidden
state. Doctoral diss.ertation, Department of Computer Science, University of Rochester.

Rivest, R. L., & Schapire, R. E. (1994). Diversity-based inference of finite automata.
Journal of the ACM, 41, 555-589.

Shatkay, H., & Kaelbling, L. P. (1997). Learning topological maps with weak local odomet
ric information~ Proceedings of Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI-91) (pp. 920-929).

Singh, S., & Cohn, D. (1998). How to dynamically merge Markov decision processes.
Advances in Neural and Information Processing Systems 10 (pp. 1057-1063).

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A frame
work for temporal abstraction in reinforcement learning. Artificial Intelligence, 181-211.

Thrun, S., & Pratt, L. (Eds.). (1998). Learning to learn. Kluwer Academic Publishers.




