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Abstract 

Experimental data have shown that synapses are heterogeneous: different 
synapses respond with different sequences of amplitudes of postsynaptic 
responses to the same spike train. Neither the role of synaptic dynamics 
itself nor the role of the heterogeneity of synaptic dynamics for com
putations in neural circuits is well understood. We present in this article 
methods that make it feasible to compute for a given synapse with known 
synaptic parameters the spike train that is optimally fitted to the synapse, 
for example in the sense that it produces the largest sum of postsynap
tic responses. To our surprise we find that most of these optimally fitted 
spike trains match common firing patterns of specific types of neurons 
that are discussed in the literature. 

1 Introduction 

A large number of experimental studies have shown that biological synapses have an in
herent dynamics, which controls how the pattern of amplitudes of postsynaptic responses 
depends on the temporal pattern of the incoming spike train. Various quantitative models 
have been proposed involving a small number of characteristic parameters, that allow us to 
predict the response of a given synapse to a given spike train once proper values for these 
characteristic synaptic parameters have been found. The analysis of this article is based 
on the model of [1], where three parameters U, F, D control the dynamics of a synapse 
and a fourth parameter A - which corresponds to the synaptic "weight" in static synapse 
models - scales the absolute sizes of the postsynaptic responses. The resulting model pre
dicts the amplitude Ak for the kth spike in a spike train with interspike intervals (lSI's) 
.601 , .602 , • .. ,.6ok-l through the equations l 

Ak = A· Uk' Rk 

Uk = U +Uk-l(1- U)exp(-.6ok-dF) (1) 

Rk = 1 + (Rk-l - Uk-1Rk-l - 1) exp( -.6ok-d D) 

which involve two hidden dynamic variables U E [0,1] and R E [0,1] with the initial 
conditions Ul = U and Rl = 1 for the first spike. These dynamic variables evolve in de
pendence of the synaptic parameters U, F, D and the interspike intervals of the incoming 

ITo be precise: the term Uk-1Rk-l in Eq. (1) was erroneously replaced by ukRk-l in the cor
responding Eq. (2) of [1]. The model that they actually fitted to their data is the model considered in 
this article. 
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Figure 1: Synaptic heterogeneity. A The parameters U, D, and F can be determined for 
biological synapses. Shown is the distribution of values for inhibitory synapses investigated 
in [2] which can be grouped into three mayor classes: facilitating (Ft), depressing (F2) 
and recovering (F3). B Synapses produce quite different outputs for the same input for 
different values of the parameters U, D, and F. Shown are the amplitudes Uk • Rk (height 
of vertical bar) of the postsynaptic response of a FI-type and a F2-type synapse to an 
irregular input spike train. The parameters for synapses fA and F2 are the mean values for 
the synapse types FI and F2 reported in [2]: (U, D, F) = (0.16,45 msec, 376 msec) for FI , 

and (0.25,706 msec, 21 msec) for F2 • 

spike train.2 It is reported in [2] that the synaptic parameters U, F, D are quite heteroge
neous, even within a single neural circuit (see Fig. IA). Note that the time constants D and 
F are in the range of a few hundred msec. The synapses investigated in [2] can be grouped 
into three major classes: facilitating (FI), depressing (F2) and recovering (F3). Fig. IB 
compares the output of a typical FI-type and a typical F2-type synapse in response to a 
typical irregular spike train. One can see that the same input spike train yields markedly 
different outputs at these two synapses. 

In this article we address the question which temporal pattern of a spike train is optimally 
fitted to a given synapse characterized by the three parameters U, F, D in a certain sense. 
One possible choice is to look for the temporal pattern of a spike train which produces the 
largest integral of synaptic current. Note that in the case where the dendritic integration is 
approximately linear the integral of synaptic current is proportional to the sum 'E~=l A . 
Uk . Rk of postsynaptic responses. We would like to stress, that the computational methods 
we will present are not restricted to any particular choice of the optimality criterion. For 
example one can use them also to compute the spike train which produces the largest peak 
of the postsynaptic membrane voltage. However, in the following we will focus on the 
question which temporal pattern of a spike train produces the largest sum 'E~=l A· Uk . Rk 

of postsynaptic responses (or equivalently the largest integral of postsynaptic current). 

More precisely, we fix a time interval T , a minimum value ~min for lSI's, a natural number 
N , and synaptic parameters U, F, D . We then look for that spike train with N spikes during 
T and lSI's 2:: ~min that maximizes 'E~=l A· Uk' Rk. Hence we seek for a solution
that is a sequence ofISI's ~l' ~2' ... , ~N-I - to the optimization problem 

N N-I 

maximize LA. Uk . Rk under L ~k ~ T and ~min ~ ~k' 1 ~ k < N . (2) 
k=l k=l 

In Section 2 of this article we present an algorithmic approach based on dynamic program-

2It should be noted that this deterministic model predicts the cumulative response of a population 
of stochastic release sites that make up a synaptic connection. 



ming that is guaranteed to find the optimal solution of this problem (up to discretization 
errors), and exhibit for major types of synapses temporal patterns of spike trains that are 
optimally fitted to these synapses. In Section 3 we present a faster heuristic method for 
computing optimally fitted spike trains, and apply it to analyze how their temporal pattern 
depends on the number N of allowed spikes during time interval T, i.e., on the firing rate 
f = NIT. Furthermore we analyze in Section 3 how changes in the synaptic parameters 
U, F, D affect the temporal pattern of the optimally fitted spike train. 

2 Computing Optimal Spike Trains for Common Types of Synapses 

Dynamic Programming For T = 1000 msec and N = 10 there are about 2100 spike 
trains among which one wants to find the optimally fitted one. We show that a computation
ally feasible solution to this complex optimization problem can be achieved via dynamic 
programming. We refer to [3] for the mathematical background of this technique, which 
also underlies the computation of optimal policies in reinforcement learning. We consider 
the discrete time dynamic system described by the equation 

Xl = (U, 1, 0) and Xk+1 = g(Xk, ak) for k = 1, ... , N - 1 (3) 

where Xk describes the state of the system at step k, and ak is the "control" or "action" taken 
at step k. In our case Xk is the triple (Uk, Rk, tk) consisting of the values of the dynamic 
variables U and R used to calculate the amplitude A . Uk . Rk of the kth postsynaptic 
response, and the time tk of the arrival of the kth spike at the synapse. The "action" ak 
is the length Ilk E [Ilmin , T - tkJ of the kth lSI in the spike train that we construct, 
where Ilmin is the smallest possible size of an lSI (we have set Ilmin = 5 msec in our 
computations). As the function gin Eq. (3) we take the function which maps (Uk, Rk, tk) 
and Ilk via Eq. (1) on (uk+l,Rk+l,tk+1) for tk+1 = tk + Ilk. The "reward" for the 
kth spike is A . Uk . Rk, i.e., the amplitude of the postsynaptic response for the kth spike. 

Hence maximizing the total reward J(Xl) = 2:~=1 A· Uk· Rk is equivalent to solving the 
maximization problem (2). The maximal possible value of Jl (Xl) can be computed exactly 
via the equations 

IN(XN) = A· UN· RN 

Jk(Xk) = max (A· Uk· Rk + Jk+1(g(Xk, Il))) 
~E[~min,T-tkl 

(4) 

backwards from k = N - 1 to k = 1. Thus the optimal sequence al, ... , aN-l of 
"actions" is the sequence Ill, .. . , IlN -1 of lSI's that achieves the maximal possible value 
of 2:~=1 A . Uk . Rk . Note that the evaluation of Jk(Xk) for a single value of Xk requires 
the evaluation of Jk+1 (Xk+1) for many different values of Xk+1.3 

The "Key" to a Synapse We have applied the dynamic programming approach to three 
major types of synapses reported in [2]. The results are summarized in Fig. 2 to Fig. 5. 
We refer informally to the temporal pattern of N spikes that maximizes the response of 
a particular synapse as the "key" to this synapse. It is shown in Fig. 3 that the "keys" 
for the inhibitory synapses Fi and F2 are rather specific in the sense that they exhibit a 
substantially smaller postsynaptic response on any other of the major types of inhibitory 
synapses reported in [2]. The specificity of a "key" to a synapse is most pronounced for 
spiking frequencies f below 20 Hz. One may speculate that due to this feature a neuron can 
activate - even without changing its firing rate - a particular subpopulation of its target 
neurons by generating a series of action potentials with a suitable temporal pattern, see 

3When one solves Eq. (4) on a computer, one has to replace the continuous state variable Xk by a 
discrete variable Xk , and round Xk+l := g(Xk'~) to the nearest value of the corresponding discrete 
variable Xk+l. For more details about the discretization of the model we refer the reader to [4]. 
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Figure 2: Spike trains that maximize the sum of postsynaptic responses for three com
mon types of synapses (T = 0.8 sec, N = 15 spikes). The parameters for synapses 
Fi, F2, and F3 are the mean values for the synapse types FI, F2 and F3 reported in 
[2] : (U, D, F} = (0.16,45 msec, 376 msec} for Fl , (0.25,706 msec, 21 msec} for F2 , and 
(0.32, 144 msec, 62 msec} for F3 . 
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Figure 3: Specificity of optimal spike trains. The optimal spike trains for synapses Fl and 
F2 - the "keys" to the synapses Fl and F2 - obtained for T = 0.8 sec and N = 15 
spikes are tested on the synapses Fl and F2 . If the "key" to synapse Fl (F2 ) is tested on 
the synapse Fl (F2 ) this synapse produces the maximal (l00 %) postsynaptic response. If 
on the other hand the "key" to synapse Fl (F2) is tested on synapse F2 (Fl) this synapse 
produces significantly less postsynaptic response. 

Fig. 4. Recent experiments [5, 6] show that neuromodulators can control the firing mode 
of cortical neurons. In [5] it is shown that bursting neurons may switch to regular firing 
if norepinephine is applied. Together with the specificity of synapses to certain temporal 
patterns these findings point to one possible mechanism how neuromodulators can change 
the effective connectivity of a neural circuit. 

Relation to discharge patterns A noteworthy aspect of the "keys" shown in Fig. 2 (and 
in Fig. 6 and Fig. 7) is that they correspond to common firing patterns ("accommodat
ing", "non-accommodating", "stuttering", "bursting" and "regular firing") of neocortical 
interneurons reported under controlled conditions in vitro [2, 5] and in vivo [7]. For ex
ample the temporal patterns of the "keys" to the synapses Fl , F2, and F3 are similar to 
the discharge patterns of "accommodating" [2], "bursting" [5, 7], and "stuttering" [2] cells 
respectively. 

What is the role of the parameter A? Another interesting effect arises if one compares 
N - - -

the optimal values of the sum Ek=l Uk . Rk (i.e. A = 1) for synapses H, F 2 , and F3 (see 

Fig. 5A) with the maximal values of E~=l A . Uk • Rk (see Fig. 5B), where we have set 
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Figure 4: Preferential addressing of postsynaptic targets. Due to the specificity of a "key" to 
a synapse a presynaptic neuron may address (i.e. evoke stronger response at) either neuron 
A or B, depending on the temporal pattern of the spike train (with the same frequency 
f = NIT) it produces (T = 0.8 sec and N = 15 in this example). 
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Figure 5: A Absolute values of the sums 2::=1 Uk . Rk if the key to synapse Pi is applied 

to synapse Pi, i = 1,2,3. B Same as panel A except that the value of 2::=1 A . Uk . Rk is 
plotted. For A we used the value of Gmax (in nS) reported in [2]. The quotient max I min 
is 1.3 compared to 2.13 in panel A. 

A equal to the value of Gmax reported in [2]. Whereas the values of Gmax vary strongly 
among different synapse types (see Fig. 5B), the resulting maximal response of a synapse 
to its proper "key" is almost the same for each synapse. Hence, one may speculate that the 
system is designed in such a way that each synapse should have an equal influence on the 
postsynaptic neuron when it receives its optimal spike train. However, this effect is most 
evident for a spiking frequency f = NIT of 10 Hz and vanishes for higher frequencies. 

3 Exploring the Parameter Space 

Sequential Quadratic Programming The numerical approach for approximately com
puting optimal spike trains that was used in section 2 is sufficiently fast so that an average 
PC can carry out any of the computations whose results were reported in Fig. 2 within a few 
hours. To be able to address computationally more expensive issues we used a a nonlinear 
optimization algorithm known as "sequential quadratic programming" (SQP)4 which is the 
state of the art approach for heuristically solving constrained optimization problems such 
as (2). We refer the reader to [8] for the mathematical background of this technique and 
to [4] for more details about the application of SQP for approximately computing optimal 
spike trains. 

Optimal Spike Trains for Different Firing Rates First we used SQP to explore the 
effect of the spike frequency f = N IT on the temporal pattern of the optimal spike train. 
For the synapses PI, P2 , and Pa we computed the optimal spike trains for frequencies 

4We used the implementation (function constr) which is contained in the MATLAB Optimiza
tion Toolbox (see http : //www . ma thworks . com/products/ optimiz a tion/). 
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Figure 6: Dependence of the optimal spike train of the synapses FL F2 , and F3 on the 
spike frequency f = NIT (T = 1 sec, N = 15, ... ,40). 
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Figure 7: Dependence of the optimal spike train on the synaptic parameter U. It is shown 
how the optimal spike train changes if the parameter U is varied. The other two parameters 
are set to the value corresponding to synapse F3: D = 144 msec and F = 62 msec. 
The black bar to the left marks the range of values (mean ± std) reported in [2] for the 
parameter U. To the right of each spike train we have plotted the corresponding value of 

J = Ef=i ukRk (gray bars). 

ranging from 15 Hz to 40 Hz. The results are summarized in Fig. 6. For synapses Fi and 
F2 the characteristic spike pattern (Fi ... accommodating, F2 ... stuttering) is the same for 
all frequencies. In contrast, the optimal spike train for synapse F3 has a phase transition 
from "stuttering" to "non-accommodating" at about 20 Hz. 

The Impact of Individual Synaptic Parameters We will now address the question how 
the optimal spike train depends on the individual synaptic parameters U, F, and D. The 
results for the case of F3-type synapses and the parameter U are summarized in Fig. 7. For 
results with regard to other parameters and synapse types we refer to [4]. We have marked 
in Fig. 7 with a black bar the range of U for F3-type synapses reported in [2]. It can be 
seen that within this parameter range we find "regu]ar" and "bursting" spike patterns. Note 
that the sum of postsynaptic responses J (gray horizontal bars in Fig. 7) is not proportional 
to U. While U increases from 0.1 to 0.6 (6 fold change) J only increases by a factor of 2. 
This seems to be interesting since the parameter U is closely related to the initial release 
probability of a synapse, and it is a common assumption that the "strength" of a synapse is 
proportional to its initial release probability. 



4 Discussion 

We have presented two complementary computational approaches for computing spike 
trains that optimize a given response criterion for a given synapse. One of these meth
ods is based on dynamic programming (similar as in reinforcement learning), the other one 
on sequential quadratic programming. These computational methods are not restricted to 
any particular choice of the optimality criterion and the synaptic model. In [4] applications 
of these methods to other optimality criteria, e.g. maximizing the specificity, are discussed. 

It turns out that the spike trains that maximize the response of Fl-, F2- and F3-type synapses 
(see Fig. 1) are well known firing patterns like "accommodating", "bursting" and "regular 
firing" of specific neuron types. Furthermore for Fl- and F3-type synapses the optimal 
spike train agrees with the most often found firing pattern of presynaptic neurons reported 
in [2], whereas for F2-type synapses there is no such agreement; see [4]. This observa
tion provides the first glimpse at a possible functional role of the specific combinations of 
synapse types and neuron types that was recently found in [2]. 

Another noteworthy aspect of the optimal spike trains is their specificity for a given synapse 
(see Fig. 3).: suitable temporal firing patterns activate preferentially specific types of 
synapses. One potential functional role of such specificity to temporal firing patterns is 
the possibility of preferential addressing of postsynaptic target neurons (see Fig. 4). Note 
that there is experimental evidence that cortical neurons can switch their intrinsic firing be
havior from "bursting" to "regular" depending on neuromodulator mediated inputs [5, 6]. 
This findings provide support for the idea of preferential addressing of postsynaptic targets 
implemented by the interplay of dynamic synapses and the intrinsic firing behavior of the 
presynaptic neuron. 

Furthermore our analysis provides the platform for a deeper understanding of the specific 
role of different synaptic parameters, because with the help of the computational techniques 
that we have introduced one can now see directly how the temporal structure of the optimal 
spike train for a synapse depends on the individual synaptic parameters. We believe that 
this inverse analysis is essential for understanding the computational role of neural circuits. 
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