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Abstract 

In this paper we show that the kernel peA algorithm of Sch6lkopf 
et al (1998) can be interpreted as a form of metric multidimensional 
scaling (MDS) when the kernel function k(x, y) is isotropic, i.e. it 
depends only on Ilx - yll. This leads to a metric MDS algorithm 
where the desired configuration of points is found via the solution 
of an eigenproblem rather than through the iterative optimization 
of the stress objective function. The question of kernel choice is 
also discussed. 

1 Introduction 

Suppose we are given n objects, and for each pair (i,j) we have a measurement 
of the "dissimilarity" Oij between the two objects. In multidimensional scaling 
(MDS) the aim is to place n points in a low dimensional space (usually Euclidean) 
so that the interpoint distances dij have a particular relationship to the original 
dissimilarities. In classical scaling we would like the interpoint distances to be equal 
to the dissimilarities. For example, classical scaling can be used to reconstruct a 
map of the locations of some cities given the distances between them. 

In metric MDS the relationship is of the form dij ~ f(Oij) where f is a specific 
function. In this paper we show that the kernel peA algorithm of Sch6lkopf et al 
[7] can be interpreted as performing metric MDS if the kernel function is isotropic. 
This is achieved by performing classical scaling in the feature space defined by the 
kernel. 

The structure of the remainder of this paper is as follows: In section 2 classical and 
metric MDS are reviewed, and in section 3 the kernel peA algorithm is described. 
The link between the two methods is made in section 4. Section 5 describes ap
proaches to choosing the kernel function, and we finish with a brief discussion in 
section 6. 



2 Classical and metric MDS 

2.1 Classical scaling 

Given n objects and the corresponding dissimilarity matrix, classical scaling is an 
algebraic method for finding a set of points in space so that the dissimilarities are 
well-approximated by the interpoint distances. The classical scaling algorithm is 
introduced below by starting with the locations of n points, constructing a dis
similarity matrix based on their Euclidean distances, and then showing how the 
configuration of the points can be reconstructed (as far as possible) from the dis
similarity matrix. 

Let the coordinates of n points in p dimensions be denoted by Xi, i = 1, ... ,n. These 
can be collected together in a n x p matrix X . The dissimilarities are calculated 
by 8;j = (Xi - Xj)T(Xi - Xj). Given these dissimilarities, we construct the matrix 
A such that aij = -! 8;j' and then set B = H AH, where H is the centering 
matrix H = In - ~l1T . With 8;j = (Xi - Xj)T(Xi - Xj), the construction of B 

leads to bij = (Xi - xF(xj - x), where x = ~ L~=l Xi. In matrix form we have 
B = (HX)(HX)T, and B is real, symmetric and positive semi-definite. Let the 
eigendecomposition of B be B = V A V T , where A is a diagonal matrix and V is a 
matrix whose columns are the eigenvectors of B. If p < n, there will be n - p zero 
eigenvaluesl . If the eigenvalues are ordered Al ~ A2 ~ ... ~ An ~ 0, then B = 
VpApVpT, where Ap = diag(Al, ... ,Ap) and Vp is the n x p matrix whose columns 
correspond to the first p eigenvectors of B, with the usual normalization so that 
the eigenvectors have unit length. The matrix X of the reconstructed coordinates 
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of the points can be obtained as X = VpAJ, with B = X XT. Clearly from the 
information in the dissimilarities one can only recover the original coordinates up 
to a translation, a rotation and reflections of the axes; the solution obtained for X 
is such that the origin is at the mean of the n points, and that the axes chosen by 
the procedure are the principal axes of the X configuration. 

It may not be necessary to uses all p dimensions to obtain a reasonable approxi
mation; a configuration X in k-dimensions can be obtained by using the largest k 

A ! 
eigenvalues so that X = VkA~ . These are known as the principal coordinates of X 
in k dimensions. The fraction of the variance explained by the first k eigenvalues is 

L~=l Ad L~=l Ai· 

Classical scaling as explained above works on Euclidean distances as the dissimilar
ities. However, one can run the same algorithm with a non-Euclidean dissimilarity 
matrix, although in this case there is no guarantee that the eigenvalues will be 
non-negative. 

Classical scaling derives from the work of Schoenberg and Young and Householder 
in the 1930's. Expositions of the theory can be found in [5] and [2]. 

2.1.1 Opthnality properties of classical scaling 

Mardia et al [5] (section 14.4) give the following optimality property ofthe classical 
scaling solution. 

1 In fact if the points are not in "general position" the number of zero eigenvalues will 
be greater than n - p. Below we assume that the points are in general position, although 
the arguments can easily be carried through with minor modifications if this is not the 
case. 



Theorem 1 Let X denote a configuration of points in ffi.P , with interpoint distances 
c5ri = (Xi - Xi)T (Xi - Xi). Let L be a p x p rotation matrix and set L = (L1' L2), 

where L1 is p x k for k < p. Let X = X L1, the projection of X onto a k-dimensional 
subspace of ffi.P , and let dri = (Xi - Xi) T (Xi - Xi). Amongst all projections X = X L 1, 

the quantity ¢ = Li,i (c5ri - dri) is minimized when X is projected onto its principal 

coordinates in k dimensions. For all i, j we have dii :::; c5ii . The value of ¢ for the 
principal coordinate projection is ¢ = 2n(Ak+1 + ... + Ap). 

2.2 Relationships between classical scaling and peA 

There is a well-known relationship between PCA and classical scaling; see e.g. Cox 
and Cox (1994) section 2.2.7. 

Principal components analysis (PCA) is concerned with the eigendecomposition of 
the sample covariance matrix S = ~ XT H X. It is easy to show that the eigenvalues 
of nS are the p non-zero eigenvalues of B. To see this note that H2 = Hand 
thus that nS = (HX)T(HX). Let Vi be a unit-length eigenvector of B so that 
BVi = AiVi. Premultiplying by (HX)T yields 

(HX)T(HX)(HXf V i = Ai(Hx)T Vi (1) 

so we see that Ai is an eigenvalue of nS. Yi = (H X)T Vi is the corresponding 
eigenvector; note that Y; Yi = Ai. Centering X and projecting onto the unit vector 
Yi = X;1/2Yi we obtain 

HXYi = X;1/2 HX(HXf Vi = AY2 v i . (2) 

Thus we see that the projection of X onto the eigenvectors of nS returns the classical 
scaling solution. 

2.3 Metric MDS 

The aim of classical scaling is to find a configuration of points X so that the in
terpoint distances dii well approximate the dissimilarities c5ii . In metric MDS this 
criterion is relaxed, so that instead we require 

(3) 

where f is a specified (analytic) function. For this definition see, e.g. Kruskal and 
Wish [4] (page 22), where polynomial transformations are suggested. 

A straightforward way to carry out metric MDS is to define a error function (or 
stress) 

(4) 

where the {wii} are appropriately chosen weights. One can then obtain deriva
tives of S with respect to the coordinates of the points that define the dii'S and 
use gradient-based (or more sophisticated methods) to minimize the stress. This 
method is known as least-squares scaling. An early reference to this kind of method 
is Sammon (1969) [6], where wii = 1/c5ii and f is the identity function. 

Note that if f(c5ii ) has some adjustable parameters () and is linear with respect to () 2, 

then the function f can also be adapted and the optimal value for those parameters 
given the current dij's can be obtained by (weighted) least-squares regression. 

2 f can still be a non-linear function of its argument. 



Critchley (1978) [3] (also mentioned in section 2.4.2 of Cox and Cox) carried out 
metric MDS by running the classical scaling algorithm on the transformed dissim
ilarities. Critchley suggests the power transformation f(oij) = 00 (for J.L > 0) . If 
the dissimilarities are derived from Euclidean distances, we note that the kernel 
k(x,y) = -llx-ylli3 is conditionally positive definite (CPD) if f3::; 2 [1]. When the 
kernel is CPD, the centered matrix will be positive definite. Critchley's use of the 
classical scaling algorithm is similar to the algorithm discussed below, but crucially 
the kernel PCA method ensures that the matrix B derived form the transformed 
dissimilarities is non-negative definite, while this is not guaranteed by Critchley's 
transformation for arbitrary J.L. 

A further member of the MDS family is nonmetric MDS (NMDS), also known as 
ordinal scaling. Here it is only the relative rank ordering between the d's and the o's 
that is taken to be important; this constraint can be imposed by demanding that 
the function f in equation 3 is monotonic. This constraint makes sense for some 
kinds of dissimilarity data (e.g. from psychology) where only the rank orderings 
have real meaning. 

3 Kernel PCA 

In recent years there has been an explosion of work on kernel methods. For super
vised learning these include support vector machines [8], Gaussian process predic
tion (see, e.g. [10]) and spline methods [9]. The basic idea of these methods is to use 
the "kernel trick". A point x in the original space is re-represented as a point ¢(x) 
in a Np-dimensional feature space3 F, where ¢(x) = (¢1(X),¢2(X), ... ,¢NF(X)). 
We can think of each function ¢j(-) as a non-linear mapping. The key to the kernel 
trick is to realize that for many algorithms, the only quantities required are of the 
form4 ¢(Xi).¢(Xj) and thus if these can be easily computed by a non-linear function 
k(Xi,Xj) = ¢(Xi).¢(Xj) we can save much time and effort. 

Sch6lkopf, Smola and Miiller [7] used this trick to define kernel peA. One could 
compute the covariance matrix in the feature space and then calculate its eigen
vectors/eigenvalues. However, using the relationship between B and the sample 
covariance matrix S described above, we can instead consider the n x n matrix K 
with entries Kij = k(Xi,Xj) for i,j = 1, .. . ,no If Np > n using K will be more 
efficient than working with the covariance matrix in feature space and anyway the 
latter would be singular. 

The data should be centered in the feature space so that L~=l ¢(Xi) = o. This 
is achieved by carrying out the eigendecomposition of K = H K H which gives the 
coordinates of the approximating points as described in section 2.2. Thus we see 
that the visualization of data by projecting it onto the first k eigenvectors is exactly 
classical scaling in feature space. 

4 A relationship between kernel PCA and metric MDS 

We consider two cases. In section 4.1 we deal with the case that the kernel is 
isotropic and obtain a close relationship between kernel PCA and metric MDS. If 
the kernel is non-stationary a rather less close relationship is derived in section 4.2. 

3For some kernels NF = 00. 

4We denote the inner product of two vectors as either a .h or aTh. 



4.1 Isotropic kernels 

A kernelfunction is stationary if k(Xi' Xj) depends only on the vector T = Xi -Xj. A 
stationary covariance function is isotropic if k(Xi,Xj) depends only on the distance 
8ij with 8;j = T.T, so that we write k(Xi,Xj) = r(8ij ). Assume that the kernel is 
scaled so that r(O) = 1. An example of an isotropic kernel is the squared exponential 
or REF (radial basis function) kernel k(Xi' Xj) = exp{ -O(Xi - Xj)T(Xi - Xj)}, for 
some parameter 0 > O. 

Consider the Euclidean distance in feature space 8;j = (¢(Xi) - ¢(Xj))T(¢(Xi) -
¢(Xj)). With an isotropic kernel this can be re-expressed as 8;j = 2(1 - r(8ij )). 
Thus the matrix A has elements aij = r(8ij ) - 1, which can be written as A = 
K - 11 T. It can be easily verified that the centering matrix H annihilates 11 T, so 
that HAH = HKH. 

We see that the configuration of points derived from performing classical scaling 
on K actually aims to approximate the feature-space distances computed as 8ij = 

J2(1- r(8ij )). As the 8ij's are a non-linear function of the 8ij's this procedure 
(kernel MDS) is an example of metric MDS. 

Remark 1 Kernel functions are usually chosen to be conditionally positive definite, 
so that the eigenvalues of the matrix k will be non-negative. Choosing arbitrary 
functions to transform the dissimilarities will not give this guarantee. 

Remark 2 In nonmetric MDS we require that dij ~ f(8ij ) for some monotonic 
function f. If the kernel function r is monotonically decreasing then clearly 1 - r 
is monotonically increasing. However, there are valid isotropic kernel (covariance) 
functions which are non-monotonic (e.g. the exponentially damped cosine r(8) = 
coo cos(w8); see [11] for details) and thus we see that f need not be monotonic in 
kernel MDS. 

Remark 3 One advantage of PCA is that it defines a mapping from the original 
space to the principal coordinates, and hence that if a new point x arrives, its 
projection onto the principal coordinates defined by the original n data points can be 
computed5 . The same property holds in kernel PCA, so that the computation of the 
projection of ¢(x) onto the rth principal direction in feature space can be computed 
using the kernel trick as L:~=1 o:i k(x, Xi), where or is the rth eigenvector of k (see 
equation 4.1 in [7]). This projection property does not hold for algorithms that 
simply minimize the stress objective function; for example the Sammon "mapping" 
algorithm [6] does not in fact define a mapping. 

4.2 Non-stationary kernels 

Sometimes non-stationary kernels (e.g. k(Xi,Xj) = (1 + Xi.Xj)m for integer m) 
are used. For non-stationary kernels we proceed as before and construct 8;j = 
(¢(Xi)-¢(Xj))T(¢(Xi)-¢(Xj)). We can again show that the kernel MDS procedure 
operates on the matrix H K H. However, the distance 8ij in feature space is not a 
function of 8ij and so the relationship of equation 3 does not hold. The situation can 
be saved somewhat if we follow Mardia et al (section 14.2.3) and relate similarities 

5Note that this will be, in general, different to the solution found by doing peA on the 
full data set of n + 1 points. 
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Figure 1: The plot shows 'Y as a function of k for various values of (3 = () /256 for 
the USPS test set. 

to dissimilarities through Jlj = Cii + Cjj - 2Cij, where Cij denotes the similarity 
between items i and j in feature space. Then we see that the similarity in feature 
space is given by Cij = ¢(Xi).¢(Xj) = k(Xi' Xj). For kernels (such as polynomial 
kernels) that are functions of Xi.Xj (the similarity in input space), we see then that 
the similarity in feature space is a non-linear function of the similarity measured in 
input space. 

5 Choice of kernel 

Having performed kernel MDS one can plot the scatter diagram (or Shepard dia
gram) of the dissimilarities against the fitted distances. We know that for each pair 
the fitted distance d ij ::; Jij because of the projection property in feature space. The 
sum of the residuals is given by 2n E~=k+l Ai where the {Ai} are the eigenvalues of 
k = H K H. (See Theorem 1 above and recall that at most n of the eigenvalues of 
the covariance matrix in feature space will be non-zero.) Hence the fraction of the 
sum-squared distance explained by the first k dimensions is 'Y = E:=1 Ad E~=1 Ai. 

One idea for choosing the kernel would be to fix the dimensionality k and choose 
r(·) so that 'Y is maximized. Consider the effect of varying () in the RBF kernel 

k(Xi , Xj) =exp{-()(xi-xjf(Xi-Xj)}. (5) 

As () -+ 00 we have Jlj = 2(1- c5(i,j)) (where c5(i,j) is the Kronecker delta), which 
are the distances corresponding to a regular simplex. Thus K -+ In, H K H = H 
and'Y = k/(n -1). Letting () -+ 0 and using e-oz ~ 1- ()z for small (), we can show 
that Kij = 1 - ()c5lj as () -+ 0, and thus that the classical scaling solution is obtained 
in this limit. 

Experiments have been run on the US Postal Service database of handwritten digits, 
as used in [7]. The test set of 2007 images was used. The size of each image is 16 x 16 
pixels, with the intensity of the pixels scaled so that the average variance over all 256 
dimensions is 0.5. In Figure 1 'Y is plotted against k for various values of (3 = () /256. 
By choosing an index k one can observe from Figure 1 what fraction of the variance 
is explained by the first k eigenvalues. The trend is that as () decreases more and 



more variance is explained by fewer components, which fits in with the idea above 
that the () -t 00 limit gives rise to the regular simplex case. Thus there does not 
seem to be a non-trivial value of () which minimizes the residuals. 

6 Discussion 

The results above show that kernel PCA using an isotropic kernel function can be 
interpreted as performing a kind of metric MDS. The main difference between the 
kernel MDS algorithm and other metric MDS algorithms is that kernel MDS uses 
the classical scaling solution in feature space. The advantage of the classical scal
ing solution is that it is computed from an eigenproblem, and avoids the iterative 
optimization of the stress objective function that is used for most other MDS so
lutions. The classical scaling solution is unique up to the unavoidable translation, 
rotation and reflection symmetries (assuming that there are no repeated eigenval
ues). Critchley's work (1978) is somewhat similar to kernel MDS, but it lacks the 
notion of a projection into feature space and does not always ensure that the matrix 
B is non-negative definite. 

We have also looked at the question of adapting the kernel so as to minimize the sum 
of the residuals. However, for the case investigated this leads to a trivial solution. 
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