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Abstract 

Ascribing computational principles to neural feedback circuits is an 
important problem in theoretical neuroscience. We study symmet­
ric threshold-linear networks and derive stability results that go 
beyond the insights that can be gained from Lyapunov theory or 
energy functions. By applying linear analysis to subnetworks com­
posed of coactive neurons, we determine the stability of potential 
steady states. We find that stability depends on two types of eigen­
modes. One type determines global stability and the other type 
determines whether or not multistability is possible. We can prove 
the equivalence of our stability criteria with criteria taken from 
quadratic programming. Also, we show that there are permitted 
sets of neurons that can be coactive at a steady state and forbid­
den sets that cannot. Permitted sets are clustered in the sense that 
subsets of permitted sets are permitted and supersets of forbidden 
sets are forbidden. By viewing permitted sets as memories stored 
in the synaptic connections, we can provide a formulation of long­
term memory that is more general than the traditional perspective 
of fixed point attractor networks. 

A Lyapunov-function can be used to prove that a given set of differential equations is 
convergent. For example, if a neural network possesses a Lyapunov-function, then 
for almost any initial condition, the outputs of the neurons converge to a stable 
steady state. In the past, this stability-property was used to construct attractor 
networks that associatively recall memorized patterns. Lyapunov theory applies 
mainly to symmetric networks in which neurons have monotonic activation functions 
[1, 2]. Here we show that the restriction of activation functions to threshold-linear 
ones is not a mere limitation, but can yield new insights into the computational 
behavior of recurrent networks (for completeness, see also [3]). 

We present three main theorems about the neural responses to constant inputs. The 
first theorem provides necessary and sufficient conditions on the synaptic weight ma­
trix for the existence of a globally asymptotically stable set of fixed points. These 
conditions can be expressed in terms of copositivity, a concept from quadratic pro­
gramming and linear complementarity theory. Alternatively, they can be expressed 
in terms of certain eigenvalues and eigenvectors of submatrices of the synaptic weight 
matrix, making a connection to linear systems theory. The theorem guarantees that 



the network will produce a steady state response to any constant input. We regard 
this response as the computational output of the network, and its characterization 
is the topic of the second and third theorems. 

In the second theorem, we introduce the idea of permitted and forbidden sets. Under 
certain conditions on the synaptic weight matrix, we show that there exist sets 
of neurons that are "forbidden" by the recurrent synaptic connections from being 
coactivated at a stable steady state, no matter what input is applied. Other sets are 
"permitted," in the sense that they can be coactivated for some input. The same 
conditions on the synaptic weight matrix also lead to conditional multistability, 
meaning that there exists an input for which there is more than one stable steady 
state. In other words, forbidden sets and conditional multistability are inseparable 
concepts. 

The existence of permitted and forbidden sets suggests a new way of thinking about 
memory in neural networks. When an input is applied, the network must select a set 
of active neurons, and this selection is constrained to be one of the permitted sets. 
Therefore the permitted sets can be regarded as memories stored in the synaptic 
connections. 

Our third theorem states that there are constraints on the groups of permitted 
and forbidden sets that can be stored by a network. No matter which learning 
algorithm is used to store memories, active neurons cannot arbitrarily be divided 
into permitted and forbidden sets, because subsets of permitted sets have to be 
permitted and supersets of forbidden sets have to be forbidden. 

1 Basic definitions 

Our theory is applicable to the network dynamics 
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where [u]+ = maxi u, O} is a rectification nonlinearity and the synaptic weight 
matrix is symmetric, W ij = W ji . The dynamics can also be written in a more 
compact matrix-vector form as :i; + x = [b + W x]+. The state of the network is x. 
An input to the network is an arbitrary vector b. An output of the network is a 
steady state;!;. in response to b. The existence of outputs and their relationship to 
the input are determined by the synaptic weight matrix W. 

A vector v is said to be nonnegative, v ~ 0, if all of its components are nonnegative. 
The nonnegative orthant {v : v ~ O} is the set of all nonnegative vectors. It can 
be shown that any trajectory starting in the nonnegative orthant remains in the 
nonnegative orthant. Therefore, for simplicity we will consider initial conditions 
that are confined to the nonnegative orthant x ~ O. 

2 Global asymptotic stability 

Definition 1 A steady state;!;. is stable if for all initial conditions sufficiently close 
to ;!;., the state trajectory remains close to ;!;. for all later times. 

A steady state is asymptotically stable if for all initial conditions sufficiently close 
to ;!;., the state trajectory converges to ;!;.. 

A set of steady states is globally asymptotically stable if from almost all initial 



conditions, state trajectories converge to one of the steady states. Exceptions are 
of measure zero. 

Definition 2 A principal submatrix A of a square matrix B is a square matrix that 
is constructed by deleting a certain set of rows and the corresponding columns of 
B. 

The following theorem establishes necessary and sufficient conditions on W for 
global asymptotic stability. 

Theorem 1 If W is symmetric, then the following conditions are equivalent: 

1. All nonnegative eigenvectors of all principal submatrices of I - W have 
positive eigenvalues. 

2. The matrix 1-W is copositive. That is, xT (I - W)x > 0 for all nonnegative 
x, except x = O. 

3. For all b, the network has a nonempty set of steady states that are globally 
asymptotically stable. 

Proof sketch: 

• (1) ~ (2). Let v* be the minimum of vT(I - W)v over nonnegative v on 
the unit sphere. If (2) is false, the minimum value is less than or equal 
to zero. It follows from Lagrange multiplier methods that the nonzero 
elements of v* comprise a nonnegative eigenvector of the corresponding 
principal submatrix of W with eigenvalue greater than or equal to unity. 

• (2) ~ (3). By the copositivity off - W, the function L = ~xT (I - W)x-bT X 

is lower bounded and radially unbounded. It is also nonincreasing under 
the network dynamics in the nonnegative orthant, and constant only at 
steady states. By the Lyapunov stability theorem, the stable steady states 
are globally asymptotically stable. In the language of optimization theory, 
the network dynamics converges to a local minimum of L subject to the 
nonnegativity constraint x ~ O. 

• (3) ~ (1). Suppose that (1) is false. Then there exists a nonnegative 
eigenvector of a principal submatrix of W with eigenvalue greater than or 
equal to unity. This can be used to construct an unbounded trajectory of 
the dynamics .• 

The meaning of these stability conditions is best appreciated by comparing with 
the analogous conditions for the purely linear network obtained by dropping the 
rectification from (1). In a linear network, all eigenvalues of W would have to be 
smaller than unity to ensure asymptotic stability. Here only nonnegative eigenvec­
tors are able to grow without bound, due to the rectification, so that only their 
eigenvalues must be less than unity. All principal submatrices of W must be con­
sidered, because different sets of feedback connections are active, depending on the 
set of neurons that are above threshold. In a linear network, I - W would have to 
be positive definite to ensure asymptotic stability, but because of the rectification, 
here this condition is replaced by the weaker condition of copositivity. 

The conditions of Theorem 1 for global asymptotic stability depend only on W, but 
not on b. On the other hand, steady states do depend on b. The next lemma says 
that the mapping from input to output is surjective. 



Lemma 1 For any nonnegative vector v 2:: 0 there exists an input b, such that v is 
a steady state of equation 1 with input b. 

Proof: Define c = v-1::W1::v, where 1:: = diag(rTl, ... ,rTN) and rTi = 1 if Vi > 0 and 
rTi = 0 if Vi = O. Choose bi = Ci for Vi > 0 and bi = -1 - (1::W1::V)i for Vi = 0 .• 

This Lemma states that any nonnegative vector can be realized as a fixed point. 
Sometimes this fixed point is stable, such as in networks subject to Theorem 1 in 
which only a single neuron is active. Indeed, the principal submatrix of I - W 
corresponding to a single active neuron corresponds to a diagonal elements, which 
according to (1) must be positive. Hence it is always possible to activate only a 
single neuron at an asymptotically stable fixed point. However, as will become 
clear from the following Theorem, not all nonnegative vectors can be realized as an 
asymptotically stable fixed point. 

3 Forbidden and permitted sets 

The following characterizations of stable steady states are based on the interlacing 
Theorem [4]. This Theorem says that if A is an - 1 by n - 1 principal submatrix 
of a n by n symmetric matrix B, then the eigenvalues of A fall in between the 
eigenvalues of B. In particular, the largest eigenvalue of A is always smaller than 
the largest eigenvalue of B. 

Definition 3 A set of neurons is permitted if the neurons can be coactivated at 
an asymptotically stable steady state for some input b. On the other hand, a set 
of neurons is forbidden, if they cannot be coactivated at an asymptotically stable 
steady state no matter what the input b. 

Alternatively, we might have defined a permitted set as a set for which the corre­
sponding square sub-matrix of I - W has only positive eigenvalues. And, similarly, 
a forbidden set could be defined as a set for which there is at least one non-positive 
eigenvalue. It follows from Theorem 1 that if the matrix I - W is copositive, then 
the eigenvectors corresponding to non-positive eigenvalues of forbidden sets have to 
have both positive and non-positive components. 

Theorem 2 If the matrix I - W is copositive, then the following statements are 
equivalent: 

1. The matrix I - W is not positive definite. 

2. There exists a forbidden set. 

3. The network is conditionally multistable. That is, there exists an input b 
such that there is more than one stable steady state. 

Proof sketch: 

• (1) => (2) . I - W is not positive definite and so there can be no asymptot­
ically stable steady state in which all neurons are active, e.g. the set of all 
neurons is forbidden . 

• (2) => (3). Denote the forbidden set with k active neurons by 1:: . Without 
loss of generality, assume that the principal submatrix of I - W correspond­
ing to 1:: has k - 1 positive eigenvalues and only one non-positive eigenvalue 
(by virtue of the interlacing theorem and the fact that the diagonal ele­
ments of I - W must be positive, there is always a subset of 1::, for which 



this is true). By choosing bi > 0 for neurons i belonging to 1; and bj « 0 for 
neurons j not belonging to 1;, the quadratic Lyapunov function L defined 
in Theorem 1 forms a saddle in the nonnegative quadrant defined by 1;. 
The saddle point is the point where L restricted to the hyperplane defined 
by the k - 1 positive eigenvalues reaches its minimum. But because neurons 
can be initialized to lower values of L on either side of the hyperplane and 
because L is non-increasing along trajectories, there is no way trajectories 
can cross the hyperplane. In conclusion, we have constructed an input b 
for which the network is multistable. 

• (3) => (1). Suppose that (1) is false. Then for all b the Lyapunov function 
L is convex and so has only a single local minimum in the convex domain 
x ~ O. This local minimum is also the global minimum. The dynamics 
must converge to this minimum .• 

If I - W is positive definite, then a symmetric threshold-linear network has a unique 
steady state. This has been shown previously [5]. The next Theorem is an expansion 
of this result, stating an equivalent condition using the concept of permitted sets. 

Theorem 3 If W is symmetric, then the following conditions are equivalent: 

1. The matrix I - W is positive definite. 

2. All sets are permitted. 

3. For all b there is a unique steady state, and it is stable. 

Proof: 

• (1) => (2). If I - W is positive definite, then it is copositive. Hence (1) 
in Theorem 2 is false and so (2) in Theorem 2 is false, e.g. all set are 
permitted. 

• (2) => (1). Suppose (1) is false, so the set of all neurons active must be 
forbidden, not all sets are permitted. 

• (1) {:::=> (3). See [5] .• 

The following Theorem characterizes the forbidden and the permitted sets. 

Theorem 4 Any subset of a permitted set is permitted. Any superset of a forbidden 
set is forbidden. 

Proof: According to the interlacing Theorem, if the smallest eigenvalue of a sym­
metric matrix is positive, then so are the smallest eigenvalues of all its principal 
submatrices. And, if the smallest eigenvalue of a principal submatrix is negative, 
then so is the smallest eigenvalue of the original matrix .• 

4 An example - the ring network 

A symmetric threshold-linear network with local excitation and larger range inhibi­
tion has been studied in the past as a model for how simple cells in primary visual 
cortex obtain their orientation tuning to visual stimulation [6, 7]. Inspired by these 
results, we have recently built an electronic circuit containing a ring network, using 
analog VLSI technology [3]. We have argued that the fixed tuning width of the 
neurons in the network arises because active sets consisting of more than a fixed 



number of contiguous neurons are forbidden. Here we give a more detailed account 
of this fact and provide a surprising result about the existence of some spurious 
permitted sets. 

Let the synaptic matrix of a 10 neuron ring-network be translationally invariant. 
The connection between neurons i and j is given by Wij = -(3 +o:oclij + 0:1 (cli,j+l + 

cli+l,j) + 0:2 (cli,j+2 + cli+2,j), where (3 quantifies global inhibition, 0:0 self-excitation, 
0:1 first-neighbor lateral excitation and 0:2 second-neighbor lateral excitation. In 
Figure 1 we have numerically computed the permitted sets of this network, with 
the parameters taken from [3], e.g. 0:0 = 0 0:1 = 1.1 0:2 = 1 (3 = 0.55. The per­
mitted sets were determined by diagonalising the 210 square sub-matrices of I - W 
and by classifying the eigenvalues corresponding to nonnegative eigenvectors. The 
Figure 1 shows the resulting parent permitted sets (those that have no permitted 
supersets). Consistent with the finding that such ring-networks can explain contrast 
invariant tuning of VI cells and multiplicative response modulation of parietal cells, 
we found that there are no permitted sets that consist of more than 5 contiguous 
active neurons. However, as can be seen, there are many non-contiguous permitted 
sets that could in principle be activated by exciting neurons in white and strongly 
inhibiting neurons in black. 

Because the activation of the spurious permitted sets requires highly specific input 
(inhibition of high spatial frequency), it can be argued that the presence of the 
spurious permitted sets is not relevant for the normal operation of the ring net­
work, where inputs are typically tuned and excitatory (such as inputs from LGN to 
primary visual cortex). 
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Figure 1: Left: Output of a ring network of 10 neurons to uniform input (random 
initial condition). Right: The 9 parent permitted sets (x-axis: neuron number, 
y-axis: set number). White means that a neurons belongs to a set and black means 
that it does not. Left-right and translation symmetric parent permitted sets of the 
ones shown have been excluded. The first parent permitted set (first row from the 
bottom) corresponds to the output on the left . 

5 Discussion 

We have shown that pattern memorization in threshold linear networks can be 
viewed in terms of permitted sets of neurons, e.g. sets of neurons that can be 
coactive at a steady state. According to this definition, the memories are stored by 
the synaptic weights, independently of the inputs. Hence, this concept of memory 
does not suffer from input-dependence, as would be the case for a definition of 



memory based on the fixed points of the dynamics. 

Pattern retrieval is strongly constrained by the input. A typical input will not allow 
for the retrieval of arbitrary stored permitted sets. This comes from the fact that 
multistability is not just dependent on the existence of forbidden sets, but also on 
the input (theorem 2). For example, in the ring network, positive input will always 
retrieve permitted sets consisting of a group of contiguous neurons, but not any of 
the spurious permitted sets, Figure 1. Generally, multistability in the ring network 
is only possible when more than a single neuron is excited. 

Notice that threshold-linear networks can behave as traditional attractor networks 
when the inputs are represented as initial conditions of the dynamics. For example, 
by fixing b = 1 and initializing a copositive network with some input, the permitted 
sets unequivocally determine the stable fixed points. Thus, in this case, the notion of 
permitted sets is no different from fixed point attractors. However, the hierarchical 
grouping of permitted sets (Theorem 4) becomes irrelevant, since there can be only 
one attractive fixed point per hierarchical group defined by a parent permitted set. 

The fact that no permitted set can have a forbidden subset represents a constraint 
on the possible computations of symmetric networks. However, this constraint does 
not have to be viewed as an undesired limitation. On the contrary, being aware of 
this constraint may lead to a deeper understanding of learning algorithms and rep­
resentations for constraint satisfaction problems. We are reminded of the history of 
perceptrons, where the insight that they can only solve linearly separable classifica­
tion problems led to the invention of multilayer perceptrons and backpropagation. 
In a similar way, grouping problems that do not obey the natural hierarchy inher­
ent in symmetric networks, might necessitate the introduction of hidden neurons to 
realize the right geometry. For the interested reader, see also [8] for a simple pro­
cedure of how to store a given family of possibly overlapping patterns as permitted 
sets. 
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