
Learning Statistically Neutral Tasks 
without Expert Guidance 

Ton Weijters 
Information Technology, 

Eindhoven University, 
The Netherlands 

Antal van den Bosch 
ILK, 

Tilburg University, 
The Netherlands 

Abstract 

Eric Postma 
Computer Science, 

Universiteit Maastricht, 
The Netherlands 

In this paper, we question the necessity of levels of expert-guided 
abstraction in learning hard, statistically neutral classification 
tasks. We focus on two tasks, date calculation and parity-12, that 
are claimed to require intermediate levels of abstraction that must 
be defined by a human expert. We challenge this claim by demon­
strating empirically that a single hidden-layer BP-SOM network can 
learn both tasks without guidance. Moreover, we analyze the net­
work's solution for the parity-12 task and show that its solution 
makes use of an elegant intermediary checksum computation. 

1 Introduction 

Breaking up a complex task into many smaller and simpler subtasks facilitates 
its solution. Such task decomposition has proved to be a successful technique in 
developing algorithms and in building theories of cognition. In their study and 
modeling of the human problem-solving process, Newell and Simon [1] employed 
protocol analysis to determine the subtasks human subjects employ in solving a 
complex task. Even nowadays, many cognitive scientists take task decomposition, 
Le., the necessity of explicit levels of abstraction, as a fundamental property of 
human problem solving. Dennis Norris' [2] modeling study on the problem-solving 
capacity of autistic savants is a case in point. In the study, Norris focuses on the 
date-calculation task (Le., to calculate the day of the week a given date fell on), 
which some autistic savants have been reported to perform flawlessly [3]. In an 
attempt to train a multi-layer neural network on the task, Norris failed to get a 
satisfactory level of generalization performance. Only by decomposing the task into 
three sub-tasks, and training the separate networks on each of the sub-tasks, the 
date-calculation task could be learned. Norris concluded that the date-calculation 
task is solvable (learnable) only when it is decomposed into intermediary steps using 
human assistance [2]. 

The date-calculation task is a very hard task for inductive learning algorithms, 
because it is a statistically neutral task: all conditional output probabilities on 
any input feature have chance values. Solving the task implies decomposing it, 
if possible, into subtasks that are not statistically neutral. The only suggested 
decomposition of the date-calculation task known to date involves explicit assistance 



74 

MFN 

T. Weijters, A. v. d. Bosch and E. Postma 

SOM 

• - class A elements 

o - class B elements 

I!I - unlabelled element 

Figure 1: An example BP-SOM network. 

from a human supervisor [2J. This paper challenges the decomposition assumption 
by showing that the date-calculation task can be learned in a single step with a 
appropriately constrained single hidden-layer neural network. In addition, another 
statistically neutral task, called the parity-n task (given an n-Iength bit string of 
1 's and O's , calculate whether the number of 1 's is even or odd) is investigated. 
In an experimental study by Dehaene, Bossini, and Giraux [4], it is claimed that 
humans decompose the parity-n task by first counting over the input string, and 
then perform the even/odd decision. In our study, parity-12 is shown to be learnable 
by a network with a single hidden layer. 

2 BP-SOM 

Below we give a brief characterization of the functioning of BP-SOM. For details we 
refer to [5J. The aim of the BP-SOM learning algorithm is to establish a coopera­
tion between BP learning and SOM learning in order to find adequately constrained 
hidden-layer representations for learning classification tasks. To achieve this aim, 
the traditional MFN architecture [6J is combined with SOMS [7]: each hidden layer of 
the MFN is associated with one SOM (See Figure 1). During training of the weights in 
the MFN, the corresponding SOM is trained on the hidden-unit activation patterns. 

After a number of training cycles of BP-SOM learning, each SOM develops a two­
dimensional representation, that is translated into classification information, i.e., 
each SOM element is provided with a class label (one of the output classes of the 
task). For example, let the BP-SOM network displayed in Figure 1 be trained on 
a classification task which maps instances to either output class A or B. Three 
types of elements can be distinguished in the SOM: elements labelled with class A, 
elements labelled with class B, and unlabelled elements (no winning class could be 
found). The two-dimensional representation of the SOM is used as an addition to 
the standard BP learning rule [6J. Classification and reliability information from the 
SOMS is included when updating the connection weights of the MFN. The error of 
a hidden-layer vector is an accumulation of the error computed by the BP learning 
rule, and a SOM-error. The SOM-error is the difference between the hidden-unit 
activation vector and the vector of its best-matching element associated with the 
same class on the SOM. 

An important effect of including SOM information in the error signals is that clusters 
of hidden-unit activation vectors of instances associated with the same class tend 
to become increasingly similar to each other. On top of this effect, individual 
hidden-unit activations tend to become more streamlined, and often end up having 
activations near one of a limited number of discrete values. 



Learning Statistically Neutral Tasks without Expert Guidance 75 

3 The date-calculation task 

The first statistically neutral calculation task we consider is the date-calculation 
task: determining the day of the week on which a given date fell. (For instance, 
October 24, 1997 fell on a Friday.) Solving the task requires an algorithmic approach 
that is typically hard for human calculators and requires one or more intermediate 
steps. It is generally assumed that the identity of these intermediate steps follows 
from the algorithmic solution, although variations exist in the steps as reportedly 
used by human experts [2] . We will show that such explicit abstraction is not 
needed, after reviewing the case for the necessity of "human assistance" in learning 
the task. 

3.1 Date calculation with expert-based abstraction 

Norris [2] attempted to model autistic savant date calculators using a multi-layer 
feedforward network (MFN) and the back-propagation learning rule [6]. He intended 
to build a model mimicking the behavior of the autistic savant without the need 
either to develop arithmetical skills or to encode explicit knowledge about reg­
ularities in the structure of dates. A standard multilayer network trained with 
backpropagation [6] was not able to solve the date-calculation task. Although the 
network was able to learn the examples used for training, it did not manage to 
generalize to novel date-day combinations. In a second attempt Norris split up the 
date-calculation task in three simpler subtasks and networks. 

U sing the three-stage learning strategy Norris obtained a nearly perfect performance 
on the training material and a performance of over 90% on the test material (errors 
are almost exclusively made on dates falling in January or February in leap years). 
He concludes with the observation that "The only reason that the network was able 
to learn so well was because it had some human assistance." [2, p.285]. In addition, 
Norris claims that "even if the [backpropagation] net did have the right number of 
layers there would be no way for the net to distribute its learning throughout the 
net such that each layer learned the appropriate step in computation." [2, p. 290]. 

3.2 Date calculation without expert-based abstraction 

We demonstrate that with the BP-SOM learning rule, a single hidden-layer feedfor­
ward network can become a successful date calculator. Our experiment compares 
three types of learning: standard backpropagation learning (BP, [6]), backpropa­
gation learning with weight decay (BPWD, [8]), and BP-SOM learning. Norris used 
BP learning in his experiment which leads to overfitting [2] (a considerably lower 
generalization accuracy on new material as compared to reproduction accuracy on 
training material); BPWD learning was included to avoid overfitting. 

The parameter values for BP (including the number of hidden units for each task) 
were optimized by performing pilot experiments with BP. The optimal learning-rate 
and momentum values were 0.15 and 0.4, respectively. BP, BPWD, and BP-SOM were 
trained for a fixed number of cycles m = 2000. Early stopping, a common method 
to prevent overfitting, was used in all experiments with BP, BPWD, and BP-SOM [9]. 

In our experiments with BP-SOM, we used the same interval of dates as used by 
Norris, i.e., training and test dates ranged from January 1, 1950 to December 31, 
1999. We generated two training sets, each consisting of 3,653 randomly selected 
instances, i.e., one-fifth of all dates. We also generated two corresponding test sets 
and two validation sets (with 1,000 instances each) of new dates within the same 
50-year period. In all our experiments, the training set, test set, and validation set 



76 T. Weijters, A. v. d. Bosch and E. Postma 

Table 1: Average generalization performances (plus standard deviation, after '±'; 
averaged over ten experiments) in terms of incorrectly-processed training and test 
instances, of BP, BPWD, and BP-SOM, trained on the date-calculation task and the 
parity-12 task. 

had empty intersections. We partitioned the input into three fields, representing 
the day of the month (31 units), the month (12 units) and the year (50 units). The 
output is represented by 7 units, one for each day of the week. The MFN contained 
one hidden layer with 12 hidden units for BP, and 25 hidden units for BPWD and 
BP-SOM. The SOM of the BP-SOM network contained 12 x 12 elements. Each of the 
three learning types was tested on two different data sets. Five runs with different 
random weight initializations were performed on each set, yielding ten runs per 
learning type. The averaged classification errors on the test material are reported 
in Table 1. 

From Table 1 it follows that the average classification error of BP is high: on test 
instances BP yields a classification error of 28.8%, while the classification error of 
BP on training instances is 20.8%. Compared to the classification error of BP, the 
classification errors on both training and test material of BPWD and BP-SOM are 
much lower. However, BPWD'S generalization performance on the test material is 
considerably worse than its performance on the training material: a clear indication 
of overfitting. We note in passing that the results of BPWD contrast with Norris' 
[2J claim that BP is unable to learn the date-calculation task when it is not decom­
posed into subtasks. The inclusion of weight decay in BP is sufficient for a good 
approximation of the performance results of Norris' decomposed network. 

The results in Table 1 also show that the performance of BP-SOM on test mate­
rial is significantly better than that of BPWD (t(19)=7.39, p<O.OOl); BP-SOM has 
learned the date-calculation task at a level well beyond the average of human date 
calculators as reported by Norris [2J. In contrast with Norris' pre-structured net­
work, BP-SOM does not rely on expert-based levels of abstraction for learning the 
date-calculation task. 

4 The parity-12 task 

The parity-n problem, starting from the XOR problem (parity-2), continues to 
be a relevant topic on the agenda of many neural network and machine learning 
researchers. Its definition is simple (determine whether there is an odd or even 
number of l's in an n-Iength bit string of l's and O's), but established state-of-the-art 
algorithms such as C4.5 [1OJ and backpropagation [6J cannot learn it even with small 
n, i.e., backpropagation fails with n 2: 4 [l1J. That is, these algorithms are unable 
to generalize from learning instances of a parity-n task to unseen new instances of 
the same task. As with date calculation, this is due to the statistical neutrality 
of the task. The solution of the problem must lie in having some comprehensive 
overview over all input values at an intermediary step before the odd/even decision 
is made. Indeed, humans appear to follow this strategy [4J . 



Learning Statistically Neutral Tasks without Expert Guidance 77 

BP BPWD BP-SOM 

Figure 2: Graphic representation of a 7 x 7 SOM associated with a BP-trained MFN 
(left) and a BPwD-trained MFN (middle), and a 7 x 7 SOM associated with a BP-SOM 
network (right), all trained on the parity-12 task_ 

Analogous to our study of the date-calculation task presented in Section 3, we apply 
BP, BPWD, and BP-SOM to the parity-n task_ We have selected n to be 12_ The 
training set contained 1,000 different instances selected at random out of the set of 
4,096 possible bit strings. The test set and the validation set contained 100 new 
instances each. The hidden layer of the MFN in all three algorithms contained 20 
hidden units, and the SOM in BP-SOM contained 7 x 7 elements. The algorithms 
were run with 10 different random weight initializations. Table 1 displays the clas­
sification errors on training instances and test instances. 

Analysis of the results shows that BP-SOM performs significantly better than BP and 
BPWD on test material (t(19)=3.42, p<O.Ol and t(19)=2.42, p<0.05, respectively). 
(The average error of 6.2% made by BP-SOM stems from a single experiment out 
of the ten performing at chance level, and the remaining nine yielding about 1 % 
error). BP-SOM is able to learn the parity-12 task quite accurately; BP and BPWD 
fail relatively, which is consistent with other findings [11]. 

As an additional analysis, we have investigated the differences in hidden unit activa­
tions after training with the three learning algorithms. To visualize the differences 
between the representations developed at the hidden layers of the MFNS trained with 
BP, BPWD, and BP-SOM, we also trained SOMs with the hidden layer activities of 
the trained BP and BPWD networks. The left part of Figure 2 visualizes the class 
labelling of the SOM attached to the BP-trained MFN after training; the middle part 
visualizes the SOM of the BpwD-trained MFN, and the right part displays the SOM of 
the BP-SOM network after training on the same material. The SOM of the BP-SOM 
network is much more organized and clustered than that of the SOMs corresponding 
with the BP-trained and BpwD-trained MFNS. The reliability values of the elements 
of all three SOMS are represented by the width of the black and white squares. It 
can be seen that the overall reliability and the degree of clusteredness of the SOM of 
the BP-SOM network is considerably higher than that of the SOM of the BP-trained 
and BpwD-trained MFNS. 

5 How parity-12 is learned 

Given the hardness of the task and the supposed necessity of expert guidance, and 
given BP-SOM'S success in learning parity-12 in contrast, it is relevant to analyze 
what solution was found in the BP-SOM learning process. In this subsection we 
provide such an analysis, and show that the trained network performs an elegant 
checksum calculation at the hidden layer as the intermediary step_ 

All elements of SOMS of BP-SOM networks trained on the paritY-12 task are either 
the prototype for training instances that are all labeled with the same class, or 



78 T. Weijters, A. v. d. Bosch and E. Postma 

Table 2: List of some training instances of the parity-12 task associated with SOM 
elements (1,1), (2,4), and (3,3) of a trained BP-SOM network. 

SOM (1,1), class-even, reliability 1.0 
inl in2 in3 in4 in5 in6 in7 inS in9 inl0 inll in12 checksum 
1 1 0 0 0 0 0 0 0 0 0 0 -2 
0 0 1 0 0 0 1 0 1 1 0 0 -2 
1 1 0 1 0 0 0 1 0 0 0 0 -2 

SOM 12,4), class-odd, reliability 1.0 
inl in2 in3 in4 in5 in6 in7 inS in9 inl0 inll in12 checksum 
0 1 1 1 1 0 1 1 0 1 0 0 -1 
1 1 1 0 1 1 1 0 1 1 0 1 -1 
1 0 1 1 0 1 0 1 1 0 1 0 -1 

:OM (3,3), class-even, reliability 1.0 
inl in2 in3 in4 in5 in6 in7 inS in9 inl0 inll in12 checksum 
0 0 1 1 0 0 1 1 0 1 0 1 0 
1 1 1 1 1 0 1 0 0 0 1 1 0 
1 0 1 1 1 1 0 1 1 0 0 1 0 

II - - - 1+ + + I - - - I + + + II II 

prototype of no instances at all. Non-empty elements (the black and white squares 
in the right part of Figure 2) can thus be seen as containers of homogeneously­
labeled subsets of the training set (i.e., fully reliable elements). The first step of our 
analysis consists of collecting, after training, for each non-empty SOM element all 
training instances clustered at that SOM element. As an illustration, Table 2 lists 
some training instances clustered at the SOM elements at coordinates (1,1), (2,4), 
and (3,3). At first sight the only common property of instances associated with 
the same SOM element is the class to which they belong; e.g., all instances of SOM 

element (1,1) are even, all instances of SOM element (2,4) are odd, and all instances 
of SOM element (3,3) are again even. 

The second step of our analysis focuses on the sign of the weights of the connections 
between input and hidden units. Surprisingly, we find that the connections of each 
individual input unit to all hidden units have the same sign; each input unit can 
therefore be labeled with a sign marker (as displayed at the bottom of Table 2). 
This allows the clustering on the SOM to become interpretable. All weights from 
input unit 1,2,3, 7,8, and 9 to all units of the hidden layer are negative, all weights 
from input unit 4,5,6, 10, 11, and 12 to all units of the hidden layer are positive. At 
the hidden layer, this information is gathered as if a checksum is computed; each 
SOM element contains instances that add up to an identical checksum. This can 
already be seen using only the sign information rather than the specific weights. 
For instance, all instances clustered at SOM element (1,1) lead to a checksum of 
-2 when a sum is taken of the product of all input values with all weight signs. 
Analogously, all instances of cluster (2,4) count up to -1 and the instances of cluster 
(3,3) to zero. The same regularity is present in the instances of the other SOM 
elements. 

In sum, the BP-SOM solution to the parity-12 task can be interpreted as to trans­
form it at the hidden layer into the mapping of different, approximately discrete, 
checksums to either class 'even' or 'odd'. 



Learning Statistically Neutral Tasks without Expert Guidance 79 

6 Conclusions 

We have performed two learning experiments in which the BP-SOM learning algo­
rithm was trained on the date-calculation task and on the parity-12 task. Both 
tasks are hard to learn because they are statistically neutral, but can be learned 
adequately and without expert guidance by the BP-SOM learning algorithm. The 
effect of the SOM part in BP-SOM (adequately constrained hidden-layer vectors, re­
liable clustering of vectors on the SOM, and streamlined hidden-unit activations) 
clearly contributes to this success. 

From the results of the experiments on the date-calculation task, we conclude that 
Norris' claim that, without human assistance, a backpropagation net would never 
learn the date-calculation task is inaccurate. While BP with weight decay performs 
at Norris' target level of accuracy, BP-SOM performs even better. Apparently BP­
SOM is able to distribute its learning throughout the net such that the two parts 
of the network (from input layer to hidden layer, and from hidden layer to output 
layer) perform the mapping with an appropriate intermediary step. 

The parity-12 experiment exemplified that such a discovered intermediary step can 
be quite elegant; it consists of the computation of a checksum via the connection 
weights between the input and hidden layers. Unfortunately, a similar elegant 
simplicity was not found in the connection weights and SOM clustering of the date 
calculation task; future research will be aimed at developing more generic analyses 
for trained BP-SOM networks, so that automatically-discovered intermediary steps 
may be made understandably explicit. 

References 

[1] Newell, A. and Simon, H.A. (1972) Human problem solving. Engelwood Cliffs, NJ: 
Prentice-Hall . 

[2] Norris, D. (1989). How to build a connectionist idiot (savant) . Cognition, 35, 277-291. 
[3] Hill , A. L. (1975). An investigation of calendar calculating by an idiot savant. Amer­

ican Journal of Psychiatry, 132, 557- 560. 
[4] Dehaene, P., Bossini, S., and Giraux, P. (1993) . The mental representation of parity 

and numerical magnitude. Journal of Experimental Psychology: General, 122, 371-
396. 

[5] Weijters, A., Van den Bosch, A., Van den Herik, H. J . (1997). Behavioural Aspects of 
Combining Backpropagation Learning and Self-organizing Maps. Connection Science, 
9,235-252. 

[6] Rumelhart, D. E., Hinton, G. E. , and Williams, R. J. (1986). Learning internal rep­
resentations by error propagation. In D. E. Rumelhart and J . L. McClelland (Eds.), 
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol­
ume 1: Foundations (pp. 318-362). Cambridge, MA: The MIT Press. 

[7] Kohonen, T. (1989). Self-organisation and Associative Memory. Berlin: Springer 
Verlag. 

[8] Hinton, G. E. (1986). Learning distributed representations of concepts. In Proceedings 
of the Eighth Annual Conference of the Cognitive Science Society, 1-12. Hillsdale, NJ: 
Erlbaum. 

[9] Prechelt, L. (1994). Probenl: A set of neural network benchmark problems and bench­
marking rules. Technical Report 24/94, Fakultat fUr Informatik, Universitat Karl­
sruhe, Germany. 

[10] Quinlan, J. R. (1993) . C4.5: Programs for Machine Learning. San Mateo, CA: Mor­
gan Kaufmann. 

[11] Thornton, C. (1996). Parity: the problem that won't go away. In G. McCalla (Ed.), 
Proceeding of AI-96, Toronto, Canada (pp. 362-374). Berlin: Springer Verlag. 


