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Abstract 

We propose a new Markov Chain Monte Carlo algorithm which is a gen­
eralization of the stochastic dynamics method. The algorithm performs 
exploration of the state space using its intrinsic geometric structure, facil­
itating efficient sampling of complex distributions. Applied to Bayesian 
learning in neural networks, our algorithm was found to perform at least 
as well as the best state-of-the-art method while consuming considerably 
less time. 

1 Introduction 

In the Bayesian framework predictions are made by integrating the function of interest 
over the posterior parameter distribution, the lattt~r being the normalized product of the 
prior distribution and the likelihood. Since in most problems the integrals are too complex 
to be calculated analytically, approximations are needed. 

Early works in Bayesian learning for nonlinear models [Buntineand Weigend 1991, 
MacKay 1992] used Gaussian approximations to the posterior parameter distribution. 
However, the Gaussian approximation may be poor, especially for complex models, be­
cause of the multi-modal character of the posterior distribution. 

Hybrid Monte Carlo (HMC) [Duane et al. 1987] introduced to the neural network com­
munity by [Neal 1996], deals more successfully with multi-modal distributions but is very 
time consuming. One of the main causes of HMC inefficiency is the anisotropic character 
of the posterior distribution - the density changes rapidly in some directions while remain­
ing almost constant in others. 

We present a novel algorithm which overcomes the above problem by using the intrinsic 
geometrical structure of the model space. 

2 Hybrid Monte Carlo 

Markov Chain Monte Carlo (MCMC) [Gilks et al. 1996] approximates the value 

E[a] = / a(O)Q(O)dO 
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by the mean 
1 IV 

a = N L a(O(t») 
t=l 

where e(l) , ... , O(N) are successive states of the ergodic Markov chain with invariant dis­
tribution Q(8) . 

In addition to ergodicity and invariance of Q(O) another quality we would like the Markov 
chain to have is rapid exploration of the state space. While the first two qualities are rather 
easily attained, achieving rapid exploration of the state space is often nontrivial. 

A state-of-the-art MCMC method, capable of sampling from complex distributions, is Hy­
brid Monte Carlo [Duane et al. 1987]. 

The algorithm is expressed in terms of sampling from canonical distribution for the state, 
q, of a "physical" system, defined in terms of the energy function E( q) I: 

P(q) ex exp(-E(q)) (1) 

To allow the use of dynamical methods, a "momentum" variable, p, is introduced , with the 
same dimensionality as q. The canonical distribution over the "phase space" is defined to 
be: 

P(q,p) ex exp(-H(q ,p)) (2) 
where H(q ,p) = E(q) + K(p) is the "Hamiltonian", which represents the total energy. 
f{ (p) is the "kinetic energy" due to momentum, defined as 

n 2 

K (p) = '" J!.L ~2m' 
i=l l 

(3) 

where pi , i = 1, . . . , n are the momentum components and m i is the "mass" associated 
with i'th component, so that different components can be given different weight. 

Sampling from the canonical distribution can be done using stochastic dynamics method 
[Andersen 1980], in which the task is split into two sub tasks - sampling uniformly from 
values of q and p with a fixed total energy, H(q ,p) , and sampling states with different 
values of H. The first task is done by simulating the Hamiltonian dynamics of the system: 

dqi BH Pi =+-
dT BPi m j 

Different energy levels are obtained by occasional stochastic Gibbs sampling 
[Geman and Geman 1984] of the momentum. Since q and p are independent, p may be 
updated without reference to q by drawing a value with probability density proportional to 
exp( - K (p)), which, in the case of (3), can be easily done, since the Pi'S have independent 
Gaussian distributions. 

In practice, Hamiltonian dynamics cannot be simulated exactly, but can be approximated 
by some discretization using finite time steps. One common approximation is leapfrog 
discretization [Neal 1996] , 

In the hybrid Monte Carlo method stochastic dynamic transitions are used to generate can­
didate states for the Metropolis algorithm [Metropolis et al. 1953]. This eliminates certain 

1 Note that any probability density that is nowhere zero can be put in this form, by simply defining 
E( q) = - log P( q) - log Z, for any convenient Z). 
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drawbacks of the stochastic dynamics such as systematic errors due to leapfrog discretiza­
tion, since Metropolis algorithm ensures that every transition keeps canonical distribution 
invariant. However, the empirical comparison between the uncorrected stochastic dynamics 
and the HMC in application to Bayesian learning in neural networks [Neal 1996] showed 
that with appropriate discretization stepsize there is no notable difference between the two 
methods. 

A modification proposed in [Horowitz 1991] instead of Gibbs sampling of momentum, is 
to replace p each time by p. cos (0) + ( . sin( 0), where 0 is a small angle and ( is distributed 
according to N(O, 1). While keeping canonical distribution invariant, this scheme, called 
momentum persistence, improves the rate of exploration. 

3 Riemannian geometry 

A Riemannian manifold [Amari 1997] is a set e ~ R n equipped with a metric tensor G 
which is a positive semidefinite matrix defining the inner product between infinitesimal 
increments as: 

< dOl, d02 >= doT . G . d02 

Let us denote entries of G by Gi,j and entries of G- l by Gi,j. This inner product naturally 
gives us the norm 

II dO IIb=< dO, dO >= dOT. G . dO. 

The Jeffrey prior over e is defined by the density function: 

11" ( 0) ex: JiG(ijI 

where I . I denotes determinant. 

3.1 Hamiltonian dynamics over a manifold 

For Riemannian manifold the dynamics take a more general form than the one described in 
section 2. 

If the metric tensor is G and all masses are set to one then the Hamiltonian is given by: 

1 
H(q,p) = E(q) + 2pT . G- l . P (4) 

The dynamics are governed by the following set of differential equations [Chavel 1993]: 

where r~ , k are the Christoffel symbols given by: 

r i. k =! ~Gi,m(OGm,k + oGm,j _ OGj,k) 
J, 2 ~ oqj Oqk oqm 

and q = ~: is related to p by q = G-lp. 
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3.2 Riemannian geometry of functions 

In regression the log-likelihood is proportional to the empirical error, which is simply the 
Euclidean distance between the target point, t, and candidate function evaluated over the 
sample. Therefore, the most natural distance measure between the models is the Euclidean 
seminorm : 

I 

d(Ol,{;2)2 =11 hi - !(Plir= L(f(Xi,01) - !(Xi,02)f (5) 

i=1 
The resulting metric tensor is: 

I 

G = L{Y'e!(xi,O). Y'd(Xi,Of} = JT . J (6) 
i=1 

where V' e denotes gradient and J = [(] ~~~ d] is the Jacobian matrix. 
J 

3.3 Bayesian geometry 

A Bayesian approach would suggest the inclusion of prior assumptions about the parame­
ters in the manifold geometry. 

If, for example, a priori 0 "" N (0, 1/ a), then the log-posterior can be written as: 

I n 

10gp(Olx) = P L(f(Xi , OI) - t)2 + a L(Ok - 0)2 
i=l k=1 

where P is inverse noise variance. 

Therefore, the natural metric in the model space is 

I n 

d(01, ( 2)2 = P L(f(Xi, ( 1) - !(Xi, ( 2))2 + a L(O.! - Ok)2 
i=l 

with the metric tensor: 
"T " GB=p·G+a·I=J .J 

where j is the "extended Jacobian": 

j"j = { 

where &i,j is the Kroneker's delta. 

i < I 

i > I 

k=1 

(7) 

(8) 

Note, that as a -+ 0, GB -+ PG, hence as the prior becomes vaguer we approach a non­
Bayesian paradigm. If, on the other hand, a -+ 00 or P . G -+ 0, the Bayesian geometry 
approaches the Euclidean geometry ofthe parameter space. These are the qualities that we 
would like the Bayesian geometry to have - if the prior is "strong" in comparison to the 
likelihood, the exact form of G should be of little importance. 

The definitions above can be applied to any log-concave prior distribution with the inverse 
Hessian of the log-prior, (V'V' logp( 0)) -1, replacing a I in (7). The framework is not re­
stricted to regression. For a general distribution class it is natural to use Fisher information 
matrix, I, as a metric tensor [Amari 1997}. The Bayesian metric tensor then becomes: 

GB = I + (V'V'logp(O))-l (9) 
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4 Manifold Stochastic Dynamics 

As mentioned before, the energy landscape in many regression problems is anisotropic. 
This degrades the performance of HMC in two aspects: 

• The dynamics may not be optimal for efficient exploration of the posterior distri­
bution as suggested by the studies of Gaussian diffusions [Hwang et al. 1993]. 

• The resulting differential equations are stiff [Gear 1971], leading to large dis­
cretization errors, which in turn necessitates small time steps, implying that the 
computational burden is high. 

Both of these problems disappear if instead of the Euclidean Hamiltonian dynamics used 
in HMC we simulate dynamics over the manifold equipped with the metric tensor G B 

proposed in the previous section. 

In the context of regression from the definition G B = jT . j, we obtain an alternative 
• & d2q . . & 

equatIOn lor dT2 ,In a matnx lorm: 

2 ' 
d q = -G- 1 ("V E + jT oj q) 
dT2 B dT 

(10) 

In the canonical distribution P(q,p) ex: exp(-H(q,p)) the conditional distribution of p 
given q is a zero-mean Gaussian with the covariance matrix G B (q) and the marginal dis­
tribution over q is proportional to exp( -E(q))1r(q). This is equivalent to mUltiplying the 
prior by the Jeffrey prior2. 

The sampling from the canonical distribution is two-fold: 

• Simulate the Hamiltonian dynamics (3.1) for one time-step using leapfrog dis­
cretisation. 

• Replace p using momentum persistence. Unlike the HMC case, the momentum 
perturbation (is distributed according to N(O, GB). 

The actual weights mUltiplying the matrices I and G in (7) may be chosen to be different 
from the specified a and /3, so as to improve numerical stability. 

5 Empirical comparison 

5.1 Robot ann problem 

We compared the performance of the Manifold Stochastic Dynamics (MSD) algorithm 
with the standard HMC. The comparison was carried using MacKay's robot arm problem 
which is a common benchmark for Bayesian methods in neural networks [MacKay 1992, 
Neal 1996]. 

The robot arm problem is concerned with the mapping: 

YI = 2.0 cos Xl + 1.3 COS(XI + X2) + el, Y2 = 2.0 sin Xl + 1.3 sin(xi + X2) + e2 

where el, e2 are independent Gaussian noise variables of standard deviation 0.05. The 
dataset used by Neal and Mackay contained 200 examples in the training set and 400 in the 
test set. 

2In fact, since the actual prior over the weights is unknown, a truly Bayesian approach would be 
to use a non-informative prior such as 71"( q). In this paper we kept the modified prior which is the 
product of 7I"(q) and a zero-mean Gaussian. 
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Figure 1: Average (over the 1 0 runs) autocorrelation of input-to-hidden (left) and hidden­
to-output (right) weights for HMC with 100 and 30 leapfrog steps per iteration and MSD 
with single leapfrog step per iteration. The horizontal axis gives the lags, measured in 
number of iterations. 

We used a neural network with two input units, one hidden layer containing 8 tanh units 
and two linear output units. 

The hyperparameter f3 was set to its correct value of 400 and 0" was chosen to be 1. 

5.2 Algorithms 

We compared MSD with two versions of HMC - with 30 and with 100 leapfrog steps per 
iteration, henceforth referred to as HMC30 and HMCIOO. MSD was run with a single 
leapfrog step per iteration. In all three algorithms momentum was resampled using persis­
tence with cos(O) = 0.95. 

A single iteration of HMC100 required about 4.8 . 106 floating point operations (flops), 
HMC30 required 1.4 . 106 flops and MSD required 0.5 . 106 flops. Hence the computa­
tionalload of MSD was about one third of that of HMC30 and 10 times lower than that of 
HMClOO. 

The discretization stepsize for HMC was chosen so as to keep the rejection rate below 5%. 
An equivalent criterion of average error in the Hamiltonian around 0.05 was used for the 
MSD. 

All three sampling algorithms were run 10 times, each time for 3000 iteration with the 
first 1000 samples discarded in order to allow the algorithms to reach the regions of high 
probability. 

5.3 Results 

One appropriate measure for the rate of state space exploration is weights autocorrelation 
[Neal 1996]. As shown in Figure 1, the behavior of MSD was clearly superior to that of 
HMC. 

Another value of interest is the total squared error over the test set. The predictions for the 
test set were made as follows. A subsample of 100 parameter vectors waS generated by 
taking every twentieth sample vector starting from 1001 and on. The predicted value was 
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the average over the empirical function distribution of this sUbsample. 

The total squared errors, nonnalized with respect to the variance on the test cases, have the 
following statistics (over the 10 runs): 

average standard deviation 
HMC30 1.314 0.074 
HMCI00 1.167 0.044 
MSD 1.161 0.023 

The average error ofHMC30 is high, indicating that the algorithm failed to reach the region 
of high probability. The errors of HMC 1 00 and MSD are comparable but the standard 
deviation for MSD is twice as low as that for HMC 1 00, meaning that the estimate obtained 
using MSD is more reliable. 

6 Conclusion 

We have described a new algorithm for efficient sampling from complex distributions such 
as those appearing in Bayesian learning with non-linear models. The empirical compar­
ison shows that our algorithm achieves results superior to the best achieved by existing 
algorithms in considerably smaller computation time. 
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