
Policy Search via Density Estimation

AndrewY. Ng
Computer Science Division

u.c. Berkeley
Berkeley, CA 94720
ang@cs.berkeley.edu

Ronald Parr
Computer Science Dept.

Stanford University
Stanford, CA 94305

parr@cs.stanjord.edu

Abstract

Daphne Koller
Computer Science Dept.

Stanford University
Stanford, CA 94305

kolle r@cs.stanjord.edu

We propose a new approach to the problem of searching a space of
stochastic controllers for a Markov decision process (MDP) or a partially
observable Markov decision process (POMDP). Following several other
authors, our approach is based on searching in parameterized families
of policies (for example, via gradient descent) to optimize solution qual
ity. However, rather than trying to estimate the values and derivatives
of a policy directly, we do so indirectly using estimates for the proba
bility densities that the policy induces on states at the different points
in time. This enables our algorithms to exploit the many techniques for
efficient and robust approximate density propagation in stochastic sys
tems. We show how our techniques can be applied both to deterministic
propagation schemes (where the MDP's dynamics are given explicitly in
compact form,) and to stochastic propagation schemes (where we have
access only to a generative model, or simulator, of the MDP). We present
empirical results for both of these variants on complex problems.

1 Introduction

In recent years, there has been growing interest in algorithms for approximate planning
in (exponentially or even infinitely) large Markov decision processes (MDPs) and par
tially observable MDPs (POMDPs). For such large domains, the value and Q-functions
are sometimes complicated and difficult to approximate, even though there may be simple,
compactly representable policies which perform very well. This observation has led to par
ticular interest in direct policy search methods (e.g., [9, 8, 1]), which attempt to choose a
good policy from some restricted class IT of policies. In our setting, IT = {1ro : (J E ~m} is
a class of policies smoothly parameterized by (J E ~m. If the value of 1ro is differentiable
in (J, then gradient ascent methods may be used to find a locally optimal 1ro. However,
estimating values of 1ro (and the associated gradient) is often far from trivial. One simple
method for estimating 1ro's value involves executing one or more Monte Carlo trajectories
using 1ro, and then taking the average empirical return; cleverer algorithms executing sin
gle trajectories also allow gradient estimates [9, 1]. These methods have become a standard
approach to policy search, and sometimes work fairly well.

In this paper, we propose a somewhat different approach to this value/gradient estimation
problem. Rather than estimating these quantities directly, we estimate the probability den
sity over the states of the system induced by 1ro at different points in time. These time slice

Policy Search via Density Estimation 1023

densities completely determine the value of the policy 1re. While density estimation is not
an easy problem, we can utilize existing approaches to density propagation [3, 5], which al
low users to specify prior knowledge about the densities, and which have also been shown,
both theoretically and empirically, to provide robust estimates for time slice densities. We
show how direct policy search can be implemented using this approach in two very differ
ent settings of the planning problem: In the first, we have access to an explicit model of the
system dynamics, allowing us to provide an explicit algebraic operator that implements the
approximate density propagation process. In the second, we have access only to a genera
tive model of the dynamics (which allows us only to sample from, but does not provide an
explicit representation of, next-state distributions). We show how both of our techniques
can be combined with gradient ascent in order to perform policy search, a somewhat subtle
argument in the case of the sampling-based approach. We also present empirical results for
both variants in complex domains.

2 Problem description

A Markov Decision Process (MDP) is a tuple (S, So, A, R, P) where:! S is a (possibly
infinite) set of states; So E S is a start state; A is a finite set of actions; R is a reward
function R : S f-t [0, Rmax]; P is a transition model P : S x A f-t ils, such that
P(s' I s, a) gives the probability oflanding in state s' upon taking action a in state s.

A stochastic policy is a map 1r : S f-t ilA, where 1r(a Is) is the probability of taking action
a in state s. There are many ways of defining a policy 1r'S "quality" or value. For a horizon
T and discount factor 1', the finite horizon discounted value function VT,"Y[1r] is defined by

VO,"Y[1r](s) = R(s) ; vt+1,"Y[1r](s) = R(s) + l' L:a 1r(a I s) L:sl P(s' Is, a)vt'''Y[1r](s').
For an infinite state space (here and below), the summation is replaced by an integral. We
can now define several optimality criteria. The finite horizon total reward with horizon
T is VT[1r] = VT,d1r](so). The infinite horizon discounted reward with discount l' <
1 is V"Y[1r] = limT-HXl VT,"Y[1r](So). The infinite horizon average reward is Vavg [1r] =
limT-HXl ~ VT,1 [1r](so), where we assume that the limit exists.

Fix an optimality criterion V. Our goal is to find a policy that has a high value. As dis
cussed, we assume we have a restricted set II of policies, and wish to select a good 1r E II.
We assume that II = {1re I ° E ffim} is a set of policies parameterized by 0 E ffi.m, and
that 1re(a I s) is continuously differentiable in 0 for each s, a. As a very simple example,
we may have a one-dimensional state, two-action MDP with "sigmoidal" 1re, such that the
probability of choosing action ao at state x is 1re(ao I x) = 1/(1 + exp(-81 - 82x)) .

Note that this framework also encompasses cases where our family II consists of policies
that depend only on certain aspects of the state. In particular, in POMDPs, we can restrict
attention to policies that depend only on the observables. This restriction results in a sub
class of stochastic memory-free policies. By introducing artificial "memory bits" into the
process state, we can also define stochastic limited-memory policies. [6]

Each 0 has a value V[O] = V[1re], as specified above. To find the best policy in II, we can
search for the 0 that maximizes V[O]. If we can compute or approximate V[O], there are
many algorithms that can be used to find a local maximum. Some, such as Nelder-Mead
simplex search (not to be confused with the simplex algorithm for linear programs), require
only the ability to evaluate the function being optimized at any point. If we can compute
or estimate V[O]'s gradient with respect to 0, we can also use a variety of (deterministic or
stochastic) gradient ascent methods.

IWe write rewards as R(s) rather than R(s, a), and assume a single start state rather than an
initial-state distribution, only to simplify exposition; these and several other minor extensions are
trivial.

1024 A. Y Ng, R. Parr and D. Koller

3 Densities and value functions

Most optimization algorithms require some method for computing V[O] for any 0 (and
sometimes also its gradient). In many real-life MOPs, however, doing so exactly is com
pletely infeasible, due to the large or even infinite number of states. Here, we will consider
an approach to estimating these quantities, based on a density-based reformulation of the
value function expression. A policy 71" induces a probability distribution over the states at
each time t. Letting ¢(O) be the initial distribution (giving probability 1 to so), we define
the time slice distributions via the recurrence:

(1)
s a

It is easy to verify that the standard notions of value defined earlier can reformulated in
terms of ¢(t); e.g., VT,1'[7I"](So) = Ei'=o ,,/(¢(t) . R), where· is the dot-product operation
(equivalently, the expectation of R with respect to ¢(t). Somewhat more subtly, for the
case of infinite horizon average reward, we have that Vavg [71"] = ¢(oo) . R, where ¢(oo) is
the limiting distribution of (1), if one exists.

This reformulation gives us an alternative approach to evaluating the value of a policy 71"0:

we first compute the time slice densities ¢(t) (or ¢(oo), and then use them to compute the
value. Unfortunately, that modification, by itself, does not resolve the difficulty. Repre
senting and computing probability densities over large or infinite spaces is often no easier
than representing and computing value functions. However, several results [3, 5] indicate
that representing and computing high-quality approximate densities may often be quite
feasible. The general approach is an approximate density propagation algorithm, using
time-slice distributions in some restricted family 3. For example, in continuous spaces, 3
might be the set of multivariate Gaussians.

The approximate propagation algorithm modifies equation (1) to maintain the time-slice
densities in 3. More precisely, for a policy 71"0, we can view (1) as defining an operator
cf>[0] that takes one distribution in !:1s and returns another. For our current policy 71"0 0 ,

we can rewrite (1) as: ¢(t+1) = cf>[Oo](¢(t)) . In most cases,=: will not be closed under
cf>; approximate density propagation algorithms use some alternative operator 4>, with the
properties that, for ¢ E 3: (a) 4>(¢) is also in 3, and (b) 4>(¢) is (hopefully) close to cf>(¢).
We use 4>[0] to denote the approximation to cf>[0], and ¢(t) to denote (4) [0]) (t) (¢(O)). If
4> is selected carefully, it is often the case that ¢(t) is close to ¢(t). Indeed, a standard
contraction analysis for stochastic processes can be used to show:

Proposition 1 Assume thatJor all t, 11cf>(¢(t)) - 4>(¢(t))lll ~ c. Then there exists some
constant>. such thatJor all t, 1I¢(t) - ¢(t) lit ~ c/ >..

In some cases, >. might be arbitrarily small, in which case the proposition is meaningless.
However, there are many systems where>. is reasonable (and independent of c) [3]. Fur
thermore, empirical results also show that approximate density propagation can often track
the exact time slice distributions quite accurately.

Approximate tracking can now be applied to our planning task. Given an optimality crite
rion V expressed with ¢(t) s, we define an approximation V to it by replacing each ¢(t) with
¢(t), e.g., VT,1'[7I"](so) = Ei'=o ,t¢(t) . R. Accuracy guarantees on approximate tracking
induce comparable guarantees on the value approximation; from this, guarantees on the
performance of a policy 7I"iJ found by optimizing V are also possible:

Proposition 2 Assume that,for all t, we have that 11¢(t) - ¢(t) lit ~ 6. ThenJor each fixed

T, ,: IVT,1'[7I"](So) - VT,1' [7I"](so)I = 0(6).

Policy Search via Density Estimation

Proposition 3 Let 0* = argmaxo V[O] and 0
V[O]I ::; €, then V[O*] - V[O] ::; 2€.

4 Differentiating approximate densities

1025

argmaxo V[O]. If maxo!V[O] -

In this section we discuss two very different techniques for maintaining an approximate
density ¢ (t) using an approximate propagation operator <1> , and show when and how they
can be combined with gradient ascent to perform policy search. In general, we will assume
that :=: is a family of distributions parameterized by e E ffi.l. For example, if :=: is the set
of d-dimensional multivariate Gaussians with diagonal covariance matrices, e would be a
2d-dimensional vector, specifying the mean vector and the covariance matrix 's diagonal.

Now, consider the task of doing gradient ascent over the space of policies, using some
optimality criterion V, say VT,.,,[O]. Differentiating it relative to 0, we get '\7oVT,.,, [O] =

'£'['=0 ,t ds~t) . R. To avoid introducing new notation, we also use ¢ (t) to denote the as
sociated vector of parameters e E ffi.l . These parameters are a function of O. Hence, the
internal gradient term is represented by an £ x m Jacobian matrix, with entries representing
the derivative of a parameter ~i relative to a parameter OJ. This gradient can be computed
using a simple recurrence, based on the chain rule for derivatives:

The first summand (an £ x m Jacobian) is the derivative of the transition operator <1> relative
to the policy parameters O. The second is a product of two terms: the derivative of <1>
relative to the distribution parameters, and the result of the previous step in the recurrence.

4.1 Deterministic density propagation

Consider a transition operator q, (for simplicity, we omit the dependence on 0). The idea in
this approach is to try to get <1>(¢) to be as close as possible to q,(¢), subject to the constraint
that <1>(¢) E 3. Specifically, we define a projection operator r that takes a distribution 'ljJ
not in 3, and returns a distribution in 3 which is closest (in some sense) to 'ljJ . We then
define <1>(¢) = r(q,(¢)). In order to ensure that gradient descent applies in this setting,
we need only ensure that rand q, are differentiable functions. Clearly, there are many
instantiations of this idea for which this assumption holds. We provide two examples.

Consider a continuous-state process with nonlinear dynamics, where q, is a mixture of
conditional linear Gaussians. We can define 3 to be the set of multivariate Gaussians.
The operator r takes a distribution (a mixture of gaussians) 'ljJ and computes its mean
and covariance matrix. This can be easily computed from 'ljJ's parameters using simple
differentiable algebraic operations.

A very different example is the algorithm of [3] for approximate density propagation in
dynamic Bayesian networks (DBNs). A DBN is a structured representation of a stochastic
process, that exploits conditional independence properties of the distribution to allow com
pact representation. In a DBN, the state space is defined as a set of possible assignments
x to a set of random variables Xl , ' .. ,Xn . The transition model P(x' I x) is described
using a Bayesian network fragment over the nodes {Xl, ' " ,Xn , X{, .. . ,X~}. A node

X i represents xft) and X: represents xft+1). The nodes X i in the network are forced
to be roots (i.e., have no parents), and are not associated with conditional probability dis
tributions. Each node X: is associated with a conditional probability distribution (CPO),
which specifies P(X: I Parents(XD) . The transition probability P(X' I X) is defined as

1026 A. Y. Ng, R. Parr and D. Koller

11 P(X: I Parents(Xf)). OBNs support a compact representation of complex transition
models in MOPs [2]. We can extend the OBN to encode the behavior of an MOP with a
stochastic policy 7l' by introducing a new random variable A representing the action taken
at the current time. The parents of A will be those variables in the state on which the action
is allowed to depend. The CPO of A (which may be compactly represented with function
approximation) is the distribution over actions defined by 7l' for the different contexts.

In discrete OBNs, the number of states grows exponentially with the number of state vari
ables, making an explicit representation of a joint distribution impractical. The algorithm
of [3] defines:::: to be a set of distributions defined compactly as a set of marginals over
smaller clusters of variables. In the simplest example, :::: is the set of distributions where
XI, ... ,X n are independent. The parameters ~ defining a distribution in :::: are the param
eters of n multinomials. The projection operator r simply marginalizes distributions onto
the individual variables, and is differentiable. One useful corollary of [3]'s analysis is that
the decay rate of a structured ~ over:::: can often be much higher than the decay rate of
~, so that multiple applications of ~ can converge very rapidly to a stationary distribution;
this property is very useful when approximating ¢(oo) to optimize relative to Vavg .

4.2 Stochastic density propagation

In many settings, the assumption that we have direct access to ~ is too strong. A weaker
assumption is that we have access to a generative model - a black box from which we
can generate samples with the appropriate distribution; i.e., for any s, a, we can generate
samples s' from P(s' I s, a). In this case, we use a different approximation scheme,
based on [5]. The operator ~ is a stochastic operator. It takes the distribution ¢, and
generates some number of random state samples Si from it. Then, for each Si and each
action a, we generate a sample s~ from the transition distribution P(· I Si, a). This sample
(Si' ai, sD is then assigned a weight Wi = 7l'8(ai I Si), to compensate for the fact that not
all actions would have been selected by 7l'e with equal probability. The resulting set of N
samples s~ weighted by the WiS is given as input to a statistical density estimator, which
uses it to estimate a new density ¢'. We assume that the density estimation procedure is a
differentiable function of the weights, often a reasonable assumption.

Clearly, this <1> can be used to compute ¢(t) for any t, and thereby approximate 7l'e'S value.
However, the gradient computation for ~ is far from trivial. In particular, to compute the
derivative 8<1> /8¢, we must consider <1>'s behavior for some perturbed ¢It) other than the

one (say, ¢~t) to which it was applied originally. In this case, an entirely different set of
samples would probably have been generated, possibly leading to a very different density.
It is hard to see how one could differentiate the result of this perturbation. We propose an
alternative solution based on importance sampling. Rather than change the samples, we
modify their weights to reflect the change in the probability that they would be generated.

Specifically, when fitting ¢it+1) , we now define a sample (Si' ai, sD's weight to be
~ (t)

. (J.(t) 0) _ ¢1 (Si)7l'e (ai lSi)
W t '1'1' - ~(t)

¢o (Si)
(3)

We can now compute <1>'s derivatives at (0o, ¢~t)) with respect to any of its parameters, as
required in (2). Let (be the vector of parameters (0, e). Using the chain rule, we have

8<1> [O](¢) 8<1> [O](¢) 8w
8(= 8w . 8['

The first term is the derivative of the estimated density relative to the sample weights (an
£ x N matrix). The second is the derivative of the weights relative to the parameter vector
(an N x (m + £) Jacobian), which can easily be computed from (3).

Policy Search via Density Estimation

~
818
~

(a)

0.042

o. ~
038

0.36

,
..... 0.34
(J)

,
0
() 0.32

0.3
I

, , ,
, , , , ,

1027

O~ ~
O~r
o 2.0'----:.';O:------:-:'~:---,:7:~:----:200=· --:2~~--::300::---~3~::--::400:----:-!..SO

#Function evaluations

(b)

Figure 1: Driving task: (a) DBN model; (b) policy-search/optimization results (with 1 s.e.)

5 Experimental results

We tested our approach in two very different domains. The first is an average-reward
DBN-MDP problem (shown in Figure l(a)), where the task is to find a policy for changing
lanes when driving on a moderately busy two-lane highway with a slow lane and a fast
lane. The model is based on the BAT DBN of [4], the result of a separate effort to build a
good model of driver behavior. For simplicity, we assume that the car's speed is controlled
automatically, so we are concerned only with choosing the LateraL Action - change Lane or
drive straight. The observables are shown in the figure: LCLr and RClr are the clearance to
the next car in each lane (close, medium or far). The agent pays a cost of 1 for each step
it is "blocked" by (meaning driving close to) the car to its front; it pays a penalty of 0.2
per step for staying in the fast lane. Policies are specified by action probabilities for the 18
possible observation combinations. Since this is a reasonably small number of parameters,
we used the simplex search algorithm described earlier to optimize V[O].

The process mixed quite quickly, so ¢(20) was a fairly good approximation to ¢(=). Bused
a fully factored representation of the joint distribution except for a single cluster over the
three observables. Evaluations are averages of 300 Monte Carlo trials of 400 steps each.
Figure 1 (b) shows the estimated and actual average rewards, as the policy parameters are
evolved over time. The algorithm improved quickly, converging to a very natural policy
with the car generally staying in the slow lane, and switching to the fast lane only when
necessary to overtake.

In our second experiment, we used the bicycle simulator of [7]. There are 9 actions cor
responding to leaning left/center/right and applying negative/zero/positive torque to the
handlebar; the six-dimensional state used in [7] includes variables for the bicycle'S tilt an
gle and orientation, and the handlebar's angle. If the bicycle tilt exceeds 7r /15, it falls over
and enters an absorbing state. We used policy search over the following space: we selected
twelve (simple, manually chosen but not fine-tuned) features of each state; actions were
chosen with a softmax - the probability of taking action ai is exp(x,wi)/ E j exp(x ,wj).
As the problem only comes with a generative model of the complicated, nonlinear, noisy
bicycle dynamics, we used the stochastic density propagation version of our algorithm,
with (stochastic) gradient ascent. Each distribution in B was a mixture of a singleton point
consisting of the absorbing-state, and of a 6-D multivariate Gaussian.

1028 A. Y. Ng, R. Pa" and D. Koller

The first task in this domain was to balance reliably on the bicycle. Using a horizon of
T = 200, discount 'Y = 0.995, and 600 Si samples per density propagation step, this was
quickly achieved. Next, trying to learn to ride to a goal2 10m in radius and 1000m away,
it also succeeded in finding policies that do so reliably. Formal evaluation is difficult, but
this is a sufficiently hard problem that even finding a solution can be considered a success.
There was also some slight parameter sensitivity (and the best results were obtained only
with ~(O) picked/fit with some care, using in part data from earlier and less successful trials,
to be "representative" of a fairly good rider's state distribution,) but using this algorithm,
we were able to obtain solutions with median riding distances under 1.1 km to the goal. This
is significantly better than the results of [7] (obtained in the learning rather than planning
setting, and using a value-function approximation solution), which reported much larger
riding distances to the goal of about 7km, and a single "best-ever" trial of about 1.7km.

6 Conclusions

We have presented two new variants of algorithms for performing direct policy search in
the deterministic and stochastic density propagation settings. Our empirical results have
also shown these methods working well on two large problems.

Acknowledgements. We warmly thank Kevin Murphy for use of and help with his Bayes
Net Toolbox, and Jette Randl~v and Preben Alstr~m for use of their bicycle simulator. A.
Ng is supported by a Berkeley Fellowship. The work of D. Koller and R. Parr is sup
ported by the ARO-MURI program "Integrated Approach to Intelligent Systems", DARPA
contract DACA 76-93-C-0025 under subcontract to lET, Inc., ONR contract N6600 1-97 -C-
8554 under DARPA's HPKB program, the Sloan Foundation, and the Powell Foundation.

References

[1] L. Baird and A.W. Moore. Gradient descent for general Reinforcement Learning. In NIPS II,
1999.

[2] C. Boutilier, T. Dean, and S. Hanks. Decision theoretic planning: Structural assumptions and
computational leverage. 1. Artijiciallntelligence Research, 1999.

[3] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In Proc. VAl,
pages 33-42, 1998.

[4] J. Forbes, T. Huang, K. Kanazawa, and S.J. Russell. The BATmobile: Towards a Bayesian
automated taxi. In Proc. IlCAI, 1995.

[5] D. Koller and R. Fratkina. Using learning for approximation in stochastic processes. In Proc.
ICML, pages 287-295, 1998.

[6] N . Meuleau, L. Peshkin, K-E. Kim, and L.P. Kaelbling. Learning finite-state controllers for
partially observable environments. In Proc. VAIlS, 1999.

[7] 1. Randl0v and P. Alstr0m. Learning to drive a bicycle using reinforcement learning and shaping.
In Proc. ICML, 1998.

[8] J.K. Williams and S. Singh. Experiments with an algorithm which learns stochastic memoryless
policies for POMDPs. In NIPS 11, 1999.

[9] R.J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229-256, 1992.

2For these experiments, we found learning could be accomplished faster with the simulator'S
integration delta-time constant tripled for training. This and "shaping" reinforcements (chosen to
reward progress made towards the goal) were both used, and training was with the bike "infinitely
distant" from the goal. For this and the balancing experiments, sampling from the fallen/absorbing
state portion of the distributions J>(t) is obviously inefficient use of samples, so all samples were
drawn from the non-absorbing state portion (i.e. the Gaussian, also with its tails corresponding to tilt
angles greater than 7r /15 truncated), and weighted accordingly relative to the absorbing-state portion.

