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We propose a new approach to the problem of searching a space of 
stochastic controllers for a Markov decision process (MDP) or a partially 
observable Markov decision process (POMDP). Following several other 
authors, our approach is based on searching in parameterized families 
of policies (for example, via gradient descent) to optimize solution qual
ity. However, rather than trying to estimate the values and derivatives 
of a policy directly, we do so indirectly using estimates for the proba
bility densities that the policy induces on states at the different points 
in time. This enables our algorithms to exploit the many techniques for 
efficient and robust approximate density propagation in stochastic sys
tems. We show how our techniques can be applied both to deterministic 
propagation schemes (where the MDP's dynamics are given explicitly in 
compact form,) and to stochastic propagation schemes (where we have 
access only to a generative model, or simulator, of the MDP). We present 
empirical results for both of these variants on complex problems. 

1 Introduction 

In recent years, there has been growing interest in algorithms for approximate planning 
in (exponentially or even infinitely) large Markov decision processes (MDPs) and par
tially observable MDPs (POMDPs). For such large domains, the value and Q-functions 
are sometimes complicated and difficult to approximate, even though there may be simple, 
compactly representable policies which perform very well. This observation has led to par
ticular interest in direct policy search methods (e.g., [9, 8, 1]), which attempt to choose a 
good policy from some restricted class IT of policies. In our setting, IT = {1ro : (J E ~m} is 
a class of policies smoothly parameterized by (J E ~m. If the value of 1ro is differentiable 
in (J, then gradient ascent methods may be used to find a locally optimal 1ro. However, 
estimating values of 1ro (and the associated gradient) is often far from trivial. One simple 
method for estimating 1ro's value involves executing one or more Monte Carlo trajectories 
using 1ro, and then taking the average empirical return; cleverer algorithms executing sin
gle trajectories also allow gradient estimates [9, 1]. These methods have become a standard 
approach to policy search, and sometimes work fairly well. 

In this paper, we propose a somewhat different approach to this value/gradient estimation 
problem. Rather than estimating these quantities directly, we estimate the probability den
sity over the states of the system induced by 1ro at different points in time. These time slice 
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densities completely determine the value of the policy 1re. While density estimation is not 
an easy problem, we can utilize existing approaches to density propagation [3, 5], which al
low users to specify prior knowledge about the densities, and which have also been shown, 
both theoretically and empirically, to provide robust estimates for time slice densities. We 
show how direct policy search can be implemented using this approach in two very differ
ent settings of the planning problem: In the first, we have access to an explicit model of the 
system dynamics, allowing us to provide an explicit algebraic operator that implements the 
approximate density propagation process. In the second, we have access only to a genera
tive model of the dynamics (which allows us only to sample from, but does not provide an 
explicit representation of, next-state distributions). We show how both of our techniques 
can be combined with gradient ascent in order to perform policy search, a somewhat subtle 
argument in the case of the sampling-based approach. We also present empirical results for 
both variants in complex domains. 

2 Problem description 

A Markov Decision Process (MDP) is a tuple (S, So, A, R, P) where:! S is a (possibly 
infinite) set of states; So E S is a start state; A is a finite set of actions; R is a reward 
function R : S f-t [0, Rmax]; P is a transition model P : S x A f-t ils, such that 
P(s' I s, a) gives the probability oflanding in state s' upon taking action a in state s. 

A stochastic policy is a map 1r : S f-t ilA, where 1r( a Is) is the probability of taking action 
a in state s. There are many ways of defining a policy 1r'S "quality" or value. For a horizon 
T and discount factor 1', the finite horizon discounted value function VT,"Y[1r] is defined by 

VO,"Y[1r](s) = R(s) ; vt+1,"Y[1r](s) = R(s) + l' L:a 1r(a I s) L:sl P(s' Is, a)vt'''Y[1r](s'). 
For an infinite state space (here and below), the summation is replaced by an integral. We 
can now define several optimality criteria. The finite horizon total reward with horizon 
T is VT[1r] = VT,d1r](so). The infinite horizon discounted reward with discount l' < 
1 is V"Y[1r] = limT-HXl VT,"Y[1r](So). The infinite horizon average reward is Vavg [1r] = 
limT-HXl ~ VT,1 [1r](so), where we assume that the limit exists. 

Fix an optimality criterion V. Our goal is to find a policy that has a high value. As dis
cussed, we assume we have a restricted set II of policies, and wish to select a good 1r E II. 
We assume that II = {1re I ° E ffim} is a set of policies parameterized by 0 E ffi.m, and 
that 1re(a I s) is continuously differentiable in 0 for each s, a. As a very simple example, 
we may have a one-dimensional state, two-action MDP with "sigmoidal" 1re, such that the 
probability of choosing action ao at state x is 1re(ao I x) = 1/(1 + exp( -81 - 82x)) . 

Note that this framework also encompasses cases where our family II consists of policies 
that depend only on certain aspects of the state. In particular, in POMDPs, we can restrict 
attention to policies that depend only on the observables. This restriction results in a sub
class of stochastic memory-free policies. By introducing artificial "memory bits" into the 
process state, we can also define stochastic limited-memory policies. [6] 

Each 0 has a value V[O] = V[1re], as specified above. To find the best policy in II, we can 
search for the 0 that maximizes V[O]. If we can compute or approximate V[O], there are 
many algorithms that can be used to find a local maximum. Some, such as Nelder-Mead 
simplex search (not to be confused with the simplex algorithm for linear programs), require 
only the ability to evaluate the function being optimized at any point. If we can compute 
or estimate V[O]'s gradient with respect to 0, we can also use a variety of (deterministic or 
stochastic) gradient ascent methods. 

IWe write rewards as R(s) rather than R(s, a), and assume a single start state rather than an 
initial-state distribution, only to simplify exposition; these and several other minor extensions are 
trivial. 
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3 Densities and value functions 

Most optimization algorithms require some method for computing V[O] for any 0 (and 
sometimes also its gradient). In many real-life MOPs, however, doing so exactly is com
pletely infeasible, due to the large or even infinite number of states. Here, we will consider 
an approach to estimating these quantities, based on a density-based reformulation of the 
value function expression. A policy 71" induces a probability distribution over the states at 
each time t. Letting ¢(O) be the initial distribution (giving probability 1 to so), we define 
the time slice distributions via the recurrence: 

(1) 
s a 

It is easy to verify that the standard notions of value defined earlier can reformulated in 
terms of ¢(t); e.g., VT,1'[7I"](So) = Ei'=o ,,/(¢(t) . R), where· is the dot-product operation 
(equivalently, the expectation of R with respect to ¢(t). Somewhat more subtly, for the 
case of infinite horizon average reward, we have that Vavg [71"] = ¢(oo) . R, where ¢(oo) is 
the limiting distribution of (1), if one exists. 

This reformulation gives us an alternative approach to evaluating the value of a policy 71"0: 

we first compute the time slice densities ¢(t) (or ¢(oo), and then use them to compute the 
value. Unfortunately, that modification, by itself, does not resolve the difficulty. Repre
senting and computing probability densities over large or infinite spaces is often no easier 
than representing and computing value functions. However, several results [3, 5] indicate 
that representing and computing high-quality approximate densities may often be quite 
feasible. The general approach is an approximate density propagation algorithm, using 
time-slice distributions in some restricted family 3. For example, in continuous spaces, 3 
might be the set of multivariate Gaussians. 

The approximate propagation algorithm modifies equation (1) to maintain the time-slice 
densities in 3. More precisely, for a policy 71"0, we can view (1) as defining an operator 
cf>[0] that takes one distribution in !:1s and returns another. For our current policy 71"0 0 , 

we can rewrite (1) as: ¢(t+1) = cf>[Oo](¢(t)) . In most cases,=: will not be closed under 
cf>; approximate density propagation algorithms use some alternative operator 4>, with the 
properties that, for ¢ E 3: (a) 4>( ¢) is also in 3, and (b) 4>( ¢) is (hopefully) close to cf>(¢). 
We use 4>[0] to denote the approximation to cf>[0], and ¢(t) to denote (4) [0]) (t) (¢(O)). If 
4> is selected carefully, it is often the case that ¢(t) is close to ¢(t). Indeed, a standard 
contraction analysis for stochastic processes can be used to show: 

Proposition 1 Assume thatJor all t, 11cf>(¢(t)) - 4>(¢(t))lll ~ c. Then there exists some 
constant>. such thatJor all t, 1I¢(t) - ¢(t) lit ~ c/ >.. 

In some cases, >. might be arbitrarily small, in which case the proposition is meaningless. 
However, there are many systems where>. is reasonable (and independent of c) [3]. Fur
thermore, empirical results also show that approximate density propagation can often track 
the exact time slice distributions quite accurately. 

Approximate tracking can now be applied to our planning task. Given an optimality crite
rion V expressed with ¢(t) s, we define an approximation V to it by replacing each ¢(t) with 
¢(t), e.g., VT,1'[7I"](so) = Ei'=o ,t¢(t) . R. Accuracy guarantees on approximate tracking 
induce comparable guarantees on the value approximation; from this, guarantees on the 
performance of a policy 7I"iJ found by optimizing V are also possible: 

Proposition 2 Assume that,for all t, we have that 11¢(t) - ¢(t) lit ~ 6. ThenJor each fixed 

T, ,: IVT,1'[7I"](So) - VT,1' [7I"](so)I = 0(6). 
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Proposition 3 Let 0* = argmaxo V[O] and 0 
V[O]I ::; €, then V[O*] - V[O] ::; 2€. 

4 Differentiating approximate densities 
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argmaxo V[O]. If maxo!V[O] -

In this section we discuss two very different techniques for maintaining an approximate 
density ¢ (t) using an approximate propagation operator <1> , and show when and how they 
can be combined with gradient ascent to perform policy search. In general, we will assume 
that :=: is a family of distributions parameterized by e E ffi.l. For example, if :=: is the set 
of d-dimensional multivariate Gaussians with diagonal covariance matrices, e would be a 
2d-dimensional vector, specifying the mean vector and the covariance matrix 's diagonal. 

Now, consider the task of doing gradient ascent over the space of policies, using some 
optimality criterion V, say VT,.,,[O]. Differentiating it relative to 0, we get '\7oVT,.,, [O] = 

'£'['=0 ,t ds~t ) . R. To avoid introducing new notation, we also use ¢ (t) to denote the as
sociated vector of parameters e E ffi.l . These parameters are a function of O. Hence, the 
internal gradient term is represented by an £ x m Jacobian matrix, with entries representing 
the derivative of a parameter ~i relative to a parameter OJ. This gradient can be computed 
using a simple recurrence, based on the chain rule for derivatives: 

The first summand (an £ x m Jacobian) is the derivative of the transition operator <1> relative 
to the policy parameters O. The second is a product of two terms: the derivative of <1> 
relative to the distribution parameters, and the result of the previous step in the recurrence. 

4.1 Deterministic density propagation 

Consider a transition operator q, (for simplicity, we omit the dependence on 0). The idea in 
this approach is to try to get <1>( ¢) to be as close as possible to q,(¢), subject to the constraint 
that <1>( ¢) E 3. Specifically, we define a projection operator r that takes a distribution 'ljJ 
not in 3, and returns a distribution in 3 which is closest (in some sense) to 'ljJ . We then 
define <1>(¢) = r(q,(¢)). In order to ensure that gradient descent applies in this setting, 
we need only ensure that rand q, are differentiable functions. Clearly, there are many 
instantiations of this idea for which this assumption holds. We provide two examples. 

Consider a continuous-state process with nonlinear dynamics, where q, is a mixture of 
conditional linear Gaussians. We can define 3 to be the set of multivariate Gaussians. 
The operator r takes a distribution (a mixture of gaussians) 'ljJ and computes its mean 
and covariance matrix. This can be easily computed from 'ljJ's parameters using simple 
differentiable algebraic operations. 

A very different example is the algorithm of [3] for approximate density propagation in 
dynamic Bayesian networks (DBNs). A DBN is a structured representation of a stochastic 
process, that exploits conditional independence properties of the distribution to allow com
pact representation. In a DBN, the state space is defined as a set of possible assignments 
x to a set of random variables Xl , ' .. ,Xn . The transition model P(x' I x) is described 
using a Bayesian network fragment over the nodes {Xl, ' " ,Xn , X{, .. . ,X~}. A node 

X i represents xft) and X: represents xft+1). The nodes X i in the network are forced 
to be roots (i.e., have no parents), and are not associated with conditional probability dis
tributions. Each node X: is associated with a conditional probability distribution (CPO), 
which specifies P(X: I Parents(XD) . The transition probability P(X' I X) is defined as 
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11 P(X: I Parents(Xf)). OBNs support a compact representation of complex transition 
models in MOPs [2]. We can extend the OBN to encode the behavior of an MOP with a 
stochastic policy 7l' by introducing a new random variable A representing the action taken 
at the current time. The parents of A will be those variables in the state on which the action 
is allowed to depend. The CPO of A (which may be compactly represented with function 
approximation) is the distribution over actions defined by 7l' for the different contexts. 

In discrete OBNs, the number of states grows exponentially with the number of state vari
ables, making an explicit representation of a joint distribution impractical. The algorithm 
of [3] defines:::: to be a set of distributions defined compactly as a set of marginals over 
smaller clusters of variables. In the simplest example, :::: is the set of distributions where 
XI, ... ,X n are independent. The parameters ~ defining a distribution in :::: are the param
eters of n multinomials. The projection operator r simply marginalizes distributions onto 
the individual variables, and is differentiable. One useful corollary of [3]'s analysis is that 
the decay rate of a structured ~ over:::: can often be much higher than the decay rate of 
~, so that multiple applications of ~ can converge very rapidly to a stationary distribution; 
this property is very useful when approximating ¢(oo) to optimize relative to Vavg . 

4.2 Stochastic density propagation 

In many settings, the assumption that we have direct access to ~ is too strong. A weaker 
assumption is that we have access to a generative model - a black box from which we 
can generate samples with the appropriate distribution; i.e., for any s, a, we can generate 
samples s' from P(s' I s, a). In this case, we use a different approximation scheme, 
based on [5]. The operator ~ is a stochastic operator. It takes the distribution ¢, and 
generates some number of random state samples Si from it. Then, for each Si and each 
action a, we generate a sample s~ from the transition distribution P(· I Si, a). This sample 
(Si' ai, sD is then assigned a weight Wi = 7l'8(ai I Si), to compensate for the fact that not 
all actions would have been selected by 7l'e with equal probability. The resulting set of N 
samples s~ weighted by the WiS is given as input to a statistical density estimator, which 
uses it to estimate a new density ¢'. We assume that the density estimation procedure is a 
differentiable function of the weights, often a reasonable assumption. 

Clearly, this <1> can be used to compute ¢(t) for any t, and thereby approximate 7l'e'S value. 
However, the gradient computation for ~ is far from trivial. In particular, to compute the 
derivative 8<1> /8¢, we must consider <1>'s behavior for some perturbed ¢It) other than the 

one (say, ¢~t) to which it was applied originally. In this case, an entirely different set of 
samples would probably have been generated, possibly leading to a very different density. 
It is hard to see how one could differentiate the result of this perturbation. We propose an 
alternative solution based on importance sampling. Rather than change the samples, we 
modify their weights to reflect the change in the probability that they would be generated. 

Specifically, when fitting ¢it+1) , we now define a sample (Si' ai, sD's weight to be 
~ (t) 

. (J.(t) 0) _ ¢1 (Si)7l'e (ai lSi) 
W t '1'1' - ~(t) 

¢o (Si) 
(3) 

We can now compute <1>'s derivatives at (0o, ¢~t)) with respect to any of its parameters, as 
required in (2). Let ( be the vector of parameters (0, e). Using the chain rule, we have 

8<1> [O](¢) 8<1> [O](¢) 8w 
8( = 8w . 8[' 

The first term is the derivative of the estimated density relative to the sample weights (an 
£ x N matrix). The second is the derivative of the weights relative to the parameter vector 
(an N x (m + £) Jacobian), which can easily be computed from (3). 
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Figure 1: Driving task: (a) DBN model; (b) policy-search/optimization results (with 1 s.e.) 

5 Experimental results 

We tested our approach in two very different domains. The first is an average-reward 
DBN-MDP problem (shown in Figure l(a)), where the task is to find a policy for changing 
lanes when driving on a moderately busy two-lane highway with a slow lane and a fast 
lane. The model is based on the BAT DBN of [4], the result of a separate effort to build a 
good model of driver behavior. For simplicity, we assume that the car's speed is controlled 
automatically, so we are concerned only with choosing the LateraL Action - change Lane or 
drive straight. The observables are shown in the figure: LCLr and RClr are the clearance to 
the next car in each lane (close, medium or far). The agent pays a cost of 1 for each step 
it is "blocked" by (meaning driving close to) the car to its front; it pays a penalty of 0.2 
per step for staying in the fast lane. Policies are specified by action probabilities for the 18 
possible observation combinations. Since this is a reasonably small number of parameters, 
we used the simplex search algorithm described earlier to optimize V[O]. 

The process mixed quite quickly, so ¢(20) was a fairly good approximation to ¢(= ). Bused 
a fully factored representation of the joint distribution except for a single cluster over the 
three observables. Evaluations are averages of 300 Monte Carlo trials of 400 steps each. 
Figure 1 (b) shows the estimated and actual average rewards, as the policy parameters are 
evolved over time. The algorithm improved quickly, converging to a very natural policy 
with the car generally staying in the slow lane, and switching to the fast lane only when 
necessary to overtake. 

In our second experiment, we used the bicycle simulator of [7]. There are 9 actions cor
responding to leaning left/center/right and applying negative/zero/positive torque to the 
handlebar; the six-dimensional state used in [7] includes variables for the bicycle'S tilt an
gle and orientation, and the handlebar's angle. If the bicycle tilt exceeds 7r /15, it falls over 
and enters an absorbing state. We used policy search over the following space: we selected 
twelve (simple, manually chosen but not fine-tuned) features of each state; actions were 
chosen with a softmax - the probability of taking action ai is exp(x,wi)/ E j exp(x ,wj). 
As the problem only comes with a generative model of the complicated, nonlinear, noisy 
bicycle dynamics, we used the stochastic density propagation version of our algorithm, 
with (stochastic) gradient ascent. Each distribution in B was a mixture of a singleton point 
consisting of the absorbing-state, and of a 6-D multivariate Gaussian. 
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The first task in this domain was to balance reliably on the bicycle. Using a horizon of 
T = 200, discount 'Y = 0.995, and 600 Si samples per density propagation step, this was 
quickly achieved. Next, trying to learn to ride to a goal2 10m in radius and 1000m away, 
it also succeeded in finding policies that do so reliably. Formal evaluation is difficult, but 
this is a sufficiently hard problem that even finding a solution can be considered a success. 
There was also some slight parameter sensitivity (and the best results were obtained only 
with ~(O) picked/fit with some care, using in part data from earlier and less successful trials, 
to be "representative" of a fairly good rider's state distribution,) but using this algorithm, 
we were able to obtain solutions with median riding distances under 1.1 km to the goal. This 
is significantly better than the results of [7] (obtained in the learning rather than planning 
setting, and using a value-function approximation solution), which reported much larger 
riding distances to the goal of about 7km, and a single "best-ever" trial of about 1.7km. 

6 Conclusions 

We have presented two new variants of algorithms for performing direct policy search in 
the deterministic and stochastic density propagation settings. Our empirical results have 
also shown these methods working well on two large problems. 
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