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Abstract

In Gaussian process regression the covariance between the outputs
at input locations x and x′ is usually assumed to depend on the

distance (x− x′)T W (x− x′), where W is a positive definite ma-
trix. W is often taken to be diagonal, but if we allow W to be a
general positive definite matrix which can be tuned on the basis of
training data, then an eigen-analysis of W shows that we are ef-
fectively creating hidden features, where the dimensionality of the
hidden-feature space is determined by the data. We demonstrate
the superiority of predictions using the general matrix over those
based on a diagonal matrix on two test problems.

1 Introduction

Over the last few years Bayesian approaches to prediction with neural networks have
come to the fore. Following an argument in Neal (1996) concerning the equivalence
between infinite neural networks and certain Gaussian processes, Gaussian process
(GP) prediction has also become popular, and Rasmussen (1996) has demonstrated
good performance of GP predictors on a number of tasks.

In Gaussian process prediction as applied by Rasmussen (1996), Williams and Ras-
mussen (1996) and others, the covariance between the outputs at locations x and
x′ is usually assumed to depend on the distance (x − x′)TW (x − x′), where W is
a positive definite, diagonal matrix. This means that different dimensions in the
input space can have different relevances to the prediction problem (c.f.MacKay
and Neal’s idea of Automatic Relevance Determination (Neal, 1996)). However,
some of the reasoning about the success of neural networks and methods such as
projection pursuit regression suggests that discovering relevant directions in feature
space is important; clearly the ARD model is a special case, where these directions



are parallel to the axes in the input feature space. In this paper we allow W to be a
general positive semidefinite matrix (defining a Mahalanobis distance in the input
space), thereby allowing general directions in the input space to be selected. We
then compare the performance of GP predictors using the diagonal and full distance
matrices on some regression problems.

The structure of the paper is as follows. GPs for regression are introduced in Section
2, where we also explain the rôle played by the distance matrix W and the criterion
used to compare the generalisation performances of the diagonal and the general
distance matrices. The two methods have been compared on two regression tasks
and the results of our experiments are shown in Section 3. A summary of the work
done and some open questions are presented in Section 4.

2 Gaussian processes and prediction

In this paper we use Gaussian process models as predictors. Consider a stochas-
tic process Y (x), with the input observable x belonging to some input space
X ⊆ R

d. Gaussian processes are a subset of stochastic processes that can be
defined by specifying the mean and covariance functions, µ (x) = E [Y (x)] and
Cp (x,x

′) = E [Y (x) Y (x′)] respectively. For the work below we shall set µ (x) ≡ 0.
Although the GP formulation provides a prior over functions, for our purposes it
suffices to note that the y-values Y

(
x1

)
, Y

(
x2

)
, . . . , Y (xn) corresponding to x-

values x1,x2, . . . ,xn have a multivariate Gaussian distribution N (0,Kp), where
(Kp)ij = Cp

(
xi,xj

)
. The specific form of the covariance function that we shall use

is

Cp (x,x
′) = σ2

p exp

[
−1

2
(x− x′)T W (x− x′)

]
. (1)

When W is a diagonal matrix the entry wii is the inverse of the squared correla-
tion length-scale of the process along the direction i. In particular, we note that
this model is closely related to the Automatic Relevance Determination method of
MacKay and Neal (Neal, 1996), as a small lengthscale along a certain direction of
the space highlights the relevance of the corresponding input feature (assuming that
the inputs are normalised).

For the prediction problem, let us suppose to have n data points Dn ={(
x1, t1

)
,
(
x2, t2

)
, . . . , (xn, tn)

}
, where ti is the output-value corresponding to the

input xi. The t’s are assumed to be generated from the true y-values by adding
Gaussian noise of variance σ2

ν . Given the assumption of a Gaussian process prior
over functions, it is a standard result (e.g. Whittle, 1963) that the predictive dis-
tribution p (t|x,Dn) corresponding to a new input is N (

ŷ (x) , σ2 (x)
)
, with mean

and variance

ŷ (x) = kT (x)K−1t (2)

σ2 (x) = Cp (x,x) + σ2
ν − kT (x)K−1k (x) , (3)

where K = Kp + σ2
νI, k

T (x) =
(
Cp

(
x,x1

)
, Cp

(
x,x2

)
, . . . , Cp (x,x

n)
)
and tT =(

t1, t2, . . . tn
)
.

This method of prediction assumes that the process y (x) we are modelling is really
a function of the observable x. However it is often the case that for real world
problems the y is actually a function of a set of hidden features z ∈ Z ⊆ R

q which
arise from a combination of the manifest variables x. In particular we wish to study
the problem in which the hidden features are a linear combination of the observable
coordinates through a q × d matrix M , where q < d (i.e.z = Mx). In this case,



the covariance of the function y is specified by Equation 1 but turns out to depend

upon the estimation of the distance between hidden features (z− z′)T Ψ(z− z′).
Since z = Mx, (z− z′) = M (x− x′) and W = MTΨM .

A GP model depends on the parameters which describe the covariance function
(i.e.σ2

p, σ
2
ν and the elements of W ). The training of a GP can be carried out by

either estimating the parameters of the covariance function (for example, using the
maximum likelihood method) or using a Bayesian approach and sampling from the
posterior distribution over the parameters (Williams and Rasmussen, 1996). We
follow the first approach, maximising the logarithm of the likelihood

L = log p (Dn|θ) = −1

2
log detK − 1

2
tTK−1t− n

2
log 2π (4)

where K−1 depends upon θ, the vector of parameters of the covariance function.

The number of free parameters depends on the number of non-zero elements of the
matrix W . Usually, W is chosen to be diagonal and the number of free parameters
is d+ 2 (the d diagonal elements, σ2

p and σ2
ν). We notice that this parametrisation

of W allows the discovery of relevant directions in the observed space; it does not
lead to an estimation of a general mapping of X onto the feature space Z as the
relevant directions are parallel to the axes in the input manifest space.

If q is not known in advance, it is preferable to use a general symmetric posi-
tive semidefinite matrix W . A parametrisation of such a matrix follows from the
Choleski decomposition as W = UTU , where U is an upper triangular matrix with
positive entries on the diagonal (Williams, 1996). Hence the factorisation of U turns
out to be

U =




exp [u1,1] u1,2 . . . u1,d

0 exp [u2,2] . . . u2,d

0 0 . . . u3,d

. . . . . . . . . exp [ud,d]


 . (5)

The elements on the diagonal are positive because of the exponential. Being sym-
metric, W has at most d (d+ 1) /2 independent entries and thus the total number
of free parameters of the GP model is 2 + d (d+ 1) /2.

We note that such a full distance matrix W allows an estimation of the matrix M
from an eigenvalue decomposition of W = V ΛV T , where Λ is a diagonal matrix of
the eigenvalues of W and V is the matrix of the eigenvectors. The dimension of the
hidden feature space Z can be inferred by the number of relevant eigenvalues of the
matrix Λ (which are the inverse of the squared correlation lengths of the process
along the directions of the hidden space). The directions of the hidden feature
space are defined by the eigenvectors corresponding to the relevant eigenvalues;
in particular the matrix composed by these eigenvectors gives an estimate of the
mapping from X to Z. In the following the diagonal and the general full correlation
matrices are designated by Wd and Wf .

It is important to observe that the predictor obtained using Wf is not equivalent to
an additive model (Hastie and Tibshirani, 1990), as the predictor is a multivariate
function of z rather than being an additive function of the components of z. How-
ever, it would be possible to produce an additive function in the GP context, using a
covariance function which is the sum of one-dimensional covariance functions based
on projections of x.

2.1 Generalisation error

Consider predicting the value of a function y(x) with a predictor ŷ(x). A commonly-
used measure of the generalisation error given a dataset Dn is the average squared



error

Eg (Dn) =

∫
(y (x)− ŷDn (x))

2
p (x) dx. (6)

The average generalisation error Eg (n) for a dataset of size n is obtained by aver-
aging over the choice of training dataset, i.e. Eg (n) = ED [Eg (Dn)]. Eg (Dn) can
sometimes be evaluated analytically or by numerical integration, but it is usually
necessary to use samples to perform the average over training datasets Dn.

In order to investigate the generalisation capabilities of GPs using a diagonal and
full distance matrices Wd and Wf , we trained the GP predictors on some regression
tasks. The generalisation errors are compared by looking at the relative error

ρ (Dn) =
Eg

d (Dn)− Eg
f (Dn)

Eg
d (Dn)

(7)

where Eg
d (Dn) and Eg

f (Dn) are the generalisation errors reported using a diago-
nal and a full distance matrix respectively. This ratio allow us to perform a fair
comparison between the pairwise differences of the generalisation errors for each
dataset and the actual value Eg

d (Dn). The expected value ρ (n) is the average over
the sampling of the training data Dn: ρ (n) = ED [ρ (Dn)].

3 Results

We have conducted experiments to compare the generalisation capabilities of a GP
predictor with full and diagonal distance matrices. In this section we illustrate the
results we obtained by training a GP on two regression tasks, the regression of a
trigonometric function (Section 3.1), and the regression of a high-interaction surface
(Section 3.2).

3.1 Regression of a trigonometric function

In the first experiments, a GP has been trained on observations drawn from the
function y (z) = sin (2πz) corrupted by Gaussian noise of mean zero and variance
σ2
ν = 10−4, 10−3, 10−2, 10−1, 1. The hidden feature z ∈ R has been generated from

the observable variables x ∈ R
2 through the transformation z = mTx, where mT =(

1/
√
2, 1/

√
2
)
and x ∼ N (0, I). We wish to infer the process y (z) (which is actually

a function of the one-dimensional feature z) by using a GP on the manifest space
R

2. We evaluated the expected generalisation errors of Equation 6 by Gaussian
quadrature (Press et al., 1992) and estimated the expected relative error ρ (n) by
averaging over 10 different samples of the training set.

The parameters of the covariance function are optimised on each of the 10 training
datasets by maximising the likelihood (see Equation 4) with the conjugate gradient
algorithm (Press et al., 1992) with 50 (for Wd) and 70 (for Wf ) iterations for the
largest training sets with 256 data.

Figure 1 reports the value of ρ (n) on the vertical axis as a function of the amount
of training data (x axis). The variance of the noise has been set to 0.01 in Figure
1(a) and 0.1 in Figure 1(b).

The plots show that the use of Wf significantly improves the generalisation perfor-
mance with respect to a diagonal matrix as the relative error ρ (n) lies well above
zero, within its confidence interval. This is particularly highlighted in Figure 1(a)
where for datasets larger than 32 data, ρ (n) is larger than 75%. We notice that
for small datasets, ρ (n) is close to zero, as the distribution of its values are spread
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Figure 1: The Figures report on the y axis the graphs of ρ (n) (see Equation 7) as a
function of the amount of training data (x axis); the noise level is set to 0.01 (Figure 1(a))
and to 0.1 (Figure 1(b)). The error bars are generated by the minimum and the maximum
value of ρ (Dn) which occurred over the 10 training datasets.

out around zero with wide confidence intervals. This is due to the fact that with
small amounts of data it is not possible to train the GP properly; in particular, as
the number of free parameters of Wf is larger than that of Wd, the former needs
larger datasets for the training than the latter in order to avoid overfitting. A fully
Bayesian treatment of the training of a GP (see Section 2) would not be so seriously
affected by this problem since the prediction of the GP would be marginalised over
the posterior distribution of the parameters. For large datasets, the relative error
declines after having reached its maximum value; this agrees with the intuition that
with large amounts of data, both methods will be become good predictors. Similar
remarks apply also to Figure 1(b) (where σ2

ν = 0.1) although we notice that the
relative error ρ (n) assumes lower values due to the higher noise variance.

The better perfomance of Wf with respect to Wd can be explained by an eigen-
analysis of the two distance matrices. Since one eigenvalue ofWf is much larger than
the other (O (10) vs. O

(
10−4

)
), the full rank distance matrix is able to discover

the relevant true dimension of the process. The eigenvector corresponding to the
larger eigenvalue represents the operator which maps the space of the observables
onto the hidden feature space. Wd fails to find out the effective dimension of the
problem as it is characterised by two eigenvalues of similar magnitude (O (10)).

3.2 A high-interaction surface

We also tested our method on an example taken from Breiman (1993) which is
concerned with a regression problem of a surface in a high dimensional space. The
target function is y (x) = σ (z1)+σ (z2)+σ (z3), where σ (z) is the sigmoid function
σ (z) = exp [z] / (1 + exp [z]). The hidden features z1, z2 and z3 are derived from
the transformation zi = 2 (li − 2) , i = 1 . . . 3, where the li are the normalised in-
ner products mT

i x. The observed variables x ∈ R
10 are uniformly distributed over

[0, 1]
10
; the three vectors mi are mT

1 = (10, 9, 3, 7,−6,−5,−9,−3,−2,−1), mT
2 =

(−1,−2,−3,−4,−5,−6, 7, 8, 9, 10) and mT
3 = (−1,−2,−3, 4, 5, 4,−3,−2,−1, 0).

The values of the true function are also corrupted by Gaussian noise of mean zero;
the variance of the noise was such that the ratio between the standard deviations
of the signal y (x) and the the noise was 4.0, as in Breiman (1993).

We have run experiments, training GPs with diagonal and full distance matrices
on 10 data sets of size 64, 128, 256 and 512; in his work, Breiman used training
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Figure 2: Figure 2(a) reports on the y axis the graph of ρ (n) (see Equation 7) as a function
of the amount of training data (x axis); the error bars are generated by the minimum and
the maximum value of ρ (Dn) that occurred over the 10 training datasets. Figure 2(a)
shows the graph of the ten eigenvalues of the Wd (∗) and the Wf (◦) distance matrices
obtained using one training set of 512 data. The lower values reached by training sets with
64 and 128 data are −1.06 and −1.97 respectively.

sets with 400 datapoints. The GP’s parameters are optimised on each of the 10
training datasets by maximising the likelihood (see Equation 4) with the conjugate
gradient algorithm (Press et al., 1992). The generalisation errors ofWd andWf have
been estimated using 1024 test data points; the relative generalisation error ρ (n)
(c.f.Equation 7) is shown in Figure 2(a). We observe that for datasets of size 512 the
use of Wf significantly reduces the relative error with respect the diagonal matrix.
Models trained with smaller training sets do not have such good generalisation
performance because the larger number of parameters in Wf (57) overfits the data.

An eigenvalue decomposition of the distance matrices shows that Wf is able to dis-
cover the underlying structure of the process. Figure 2(b) displays the eigenvalues
ofWf and Wd optimised for one of the training sets of 512 data. Wf is characterised
by three large eigenvalues, whose eigenvectors indicate the three main directions in
the feature space; thus the full matrix is able to find out three out of ten directions
which are responsible of the variation of the function. Conversely, Wd fails to dis-
cover the hidden features in the data; since all the eigenvalues have almost the same
magnitude, all the input dimensions of the observed variable are equally relevant in
training the GP.

The eigenvectors efi , i = 1, 2, 3 of Wf define a basis in the space generating a

subspace of features. In order to verify the subspace spanned by the efi actually
overlaps the hidden feature space, we tried to express the former set of vectors as a
linear combination the latter. Thus we computed the singular values (Press et al.,

1992) of the matrix composed by the normalised vectors mi and the basis efi ’s. As
three out of six singular values are negligible with respect to the others (O

(
10−2

)
vs. O (1)), the original hidden transformation can be well approximated as a linear
combination of the new basis of eigenvectors showing that the eigenspace of Wf is
a good approximation of the hidden feature space.



4 Discussion

In this paper we have shown how to discover hidden features with GP regression. We
also note that this technique could be applied to problems where Gaussian process
predictors are used in classification problems. An attractive feature of the method
is that it allows the appropriate dimensionality of the z space to be discovered. If
we wish to restrict the maximum dimensionality of Z to be q then one could use a

distance matrix of rank-q, i.e.(Ψ
1
2M)T (Ψ

1
2M).

The idea of allowing a general transformation of the input space has been mentioned
before in the literature, for example in (Girosi et al., 1995). However, Girosi et al
suggest setting the parameters in Wf by cross-validation; we believe that this is not
very practical in high-dimensional spaces. The results obtained show that the use
of a full distance matrix can reduce significantly the relative error with respect to
the use of a diagonal distance matrix. As the training of the GP has been carried
out maximising the logarithm of the likelihood, this effect was particularly evident
when larger amounts of data were used; this problem can be reduced when a full
Bayesian approach to the GP regression is used.

Currently we are investigating how the input-dimensionality of the affects GP re-
gression with a general distance matrix W (for a fixed dimensionality of Z).
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