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Abstract 

I consider the problem of learning concepts from small numbers of pos
itive examples, a feat which humans perform routinely but which com
puters are rarely capable of. Bridging machine learning and cognitive 
science perspectives, I present both theoretical analysis and an empirical 
study with human subjects for the simple task oflearning concepts corre
sponding to axis-aligned rectangles in a multidimensional feature space. 
Existing learning models, when applied to this task, cannot explain how 
subjects generalize from only a few examples of the concept. I propose 
a principled Bayesian model based on the assumption that the examples 
are a random sample from the concept to be learned. The model gives 
precise fits to human behavior on this simple task and provides qualitati ve 
insights into more complex, realistic cases of concept learning. 

1 Introduction 

The ability to learn concepts from examples is one of the core capacities of human cognition. 
From a computational point of view, human concept learning is remarkable for the fact that 
very successful generalizations are often produced after experience with only a small number 
of positive examples of a concept (Feldman, 1997). While negative examples are no doubt 
useful to human learners in refining the boundaries of concepts, they are not necessary 
in order to make reasonable generalizations of word meanings, perceptual categories, and 
other natural concepts. In contrast, most machine learning algorithms require examples of 
both positive and negative instances of a concept in order to generalize at all, and many 
examples of both kinds in order to generalize successfully (Mitchell, 1997). 

This paper attempts to close the gap between human and machine concept learning by 
developing a rigorous theory for concept learning from limited positive evidence and 
testing it against real behavioral data. I focus on a simple abstract task of interest to 
both cognitive science and machine learning: learning axis-parallel rectangles in ?Rm . We 
assume that each object x in our world can be described by its values (XI, ... , xm) on m 
real-valued observable dimensions, and that each concept C to be learned corresponds to a 
conjunction of independent intervals (mini (C) ~ Xi ~ maXi (C» along each dimension 
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Figure 1: (a) A rectangle concept C. (b-c) The size principle in Bayesian concept learning: 
of the man y hypotheses consistent wi th the observed posi ti ve examples, the smallest rapidly 
become more likely (indicated by darker lines) as more examples are observed. 

i . For example, the objects might be people, the dimensions might be "cholesterol level" 
and "insulin level", and the concept might be "healthy levels". Suppose that "healthy 
levels" applies to any individual whose cholesterol and insulin levels are each greater than 
some minimum healthy level and less than some maximum healthy level. Then the concept 
"healthy levels" corresponds to a rectangle in the two-dimensional cholesterol/insulin space. 

The problem of generalization in this setting is to infer, given a set of positive (+) and 
negative (-) examples of a concept C, which other points belong inside the rectangle 
corresponding to C (Fig. 1 a.). This paper considers the question most relevant for cognitive 
modeling: how to generalize from just a few positive examples? 

In machine learning, the problem of learning rectangles is a common textbook example 
used to illustrate models of concept learning (Mitchell, 1997). It is also the focus of state
of-the-art theoretical work and applications (Dietterich et aI., 1997). The rectangle learning 
task is not well known in cognitive psychology, but many studies have investigated human 
learning in similar tasks using simple concepts defined over two perceptually separable 
dimensions such as size and color (Shepard, 1987). Such impoverished tasks are worth 
our attention because they isolate the essential inductive challenge of concept learning in a 
form that is analytically tractable and amenable to empirical study in human subjects. 

This paper consists of two main contributions. I first present a new theoretical analysis 
of the rectangle learning problem based on Bayesian inference and contrast this model's 
predictions with standard learning frameworks (Section 2). I then describe an experiment 
with human subjects on the rectangle task and show that, of the models considered, the 
Bayesian approach provides by far the best description of how people actually generalize 
on this task when given only limited positive evidence (Section 3). These results suggest 
an explanation for some aspects of the ubiquotous human ability to learn concepts from just 
a few positive examples. 

2 Theoretical analysis 

Computational approaches to concept learning. Depending on how they model a con
cept, different approaches to concept learning differ in their ability to generalize meaning
fully from only limited positive evidence. Discriminative approaches embody no explicit 
model of a concept, but only a procedure for discriminating category members from mem
bers of mutually exclusive contrast categories. Most backprop-style neural networks and 
exemplar-based techniques (e.g. K -nearest neighbor classification) fall into this group, 
along with hybrid models like ALCOVE (Kruschke, 1992). These approaches are ruled out 
by definition; they cannot learn to discriminate positive and negative instances ifthey have 
seen only positive examples. Distributional approaches model a concept as a probability 
distribution over some feature space and classify new instances x as members of C if their 
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estimated probability p(xIG) exceeds a threshold (J. This group includes "novelty detec
tion" techniques based on Bayesian nets (Jaakkola et al., 1996) and, loosely, autoencoder 
networks (Japkowicz et al., 1995). While p(xIG) can be estimated from only positive ex
amples, novelty detection also requires negative examples for principled generalization, in 
order to set an appropriate threshold (J which may vary over many orders of magnitude for 
different concepts. For learning from positive evidence only, our best hope are algorithms 
that treat a new concept G as an unknown subset of the universe of objects and decide how 
to generalize G by finding "good" subsets in a hypothesis space H of possible concepts. 

The Bayesian framework. For this task, the natural hypothesis space H corresponds to all 
rectangles in the plane. The central challenge in generalizing using the subset approach is 
that any small set of examples will typically be consistent with many hypotheses (Fig. Ib). 
This problem is not unique to learning rectangles, but is a universal dilemna when trying to 
generalize concepts from only limited positive data. The Bayesian solution is to embed the 
hypothesis space in a probabilistic model of our observations, which allows us to weight 
different consistent hypotheses as more or less likely to be the true concept based on the 
particular examples observed. Specifically, we assume that the examples are generated by 
random sampling from the true concept. This leads to the size principle: smaller hypotheses 
become more likely than larger hypotheses (Fig. Ib - darker rectangles are more likely), 
and they become exponentially more likely as the number of consistent examples increases 
(Fig. lc). The size principle is the key to understanding how we can learn concepts from 
only a few positive examples. 

Formal treatment. We observe n positive examples X = {xCI), ... , x Cn )} of concept G 
and want to compute the generalization/unction p(y E GIX), i.e. the probability that some 
new object y belongs to G given the observations X. Let each rectangle hypothesis h be 
denoted by a quadruple (11,/2,81,82), where Ii E [-00,00] is the location of h's lower-left 
comer and 8i E [0,00] is the size of h along dimension i. 

Our probabilistic model consists of a prior density p( h) and a likelihood function p( X I h) 
for each hypothesis h E H. The likelihood is determined by our assumption of randomly 
sampled positive examples. In the simplest case, each example in X is assumed to be 
independently sampled from a uniform density over the concept C. For n examples we 
then have: 

p(Xlh) (1) 

o otherwise, 

where Ihl denotes the size of h. For rectangle (11,/2,81,82), Ihl is simply 8182. Note that 
because each hypothesis must distribute one unit mass oflikelihood over its volume for each 
example cJx h p(xlh)dh = 1), the probability density for smaller consistent hypotheses is 
greater than for larger hypotheses, and exponentially greater as a function of n. Figs. Ib,c 
illustrate this size principle for scoring hypotheses (darker rectang!es are more likely). 

The appropriate choice of p( h) depends on our background knowledge. If we have no a 
priori reason to prefer any rectangle hypothesis over any other, we can choose the scale
and location-invariant uninformative prior, p( h) = P(ll, 12, 81 ,82) = 1/(81,82), In any 
realistic application, however, we will have some prior information. For example, we may 
know the expected size O'i of rectangle concepts along dimension i in our domain, and then 
use the associated maximum entropy prior P(ll, 12, 81,82) = exp{ -( 81/0'1 + 82/ 0'2)}. 

The generalization function p(y E GIX) is computed by integrating the predictions of all 
hypotheses, weighted by their posterior probabilities p( h IX): 

p(y E GIX) = r p(y E Glh) p(hIX) dh, (2) 
lhEH 

where from Bayes' theorem p(hIX) ex: p(Xlh)p(h) (normalized such that 
fhEH p(hIX)dh = 1), and p(y E Clh) = 1 if y E hand 0 otherwise. Under the 
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uninformative prior, this becomes: 

(3) 

Here ri is the maximum distance between the examples in X along dimension i, and 
di equals 0 if y falls inside the range of values spanned by X along dimension i, and 
otherwise equals the distance from y to the nearest example in X along dimension i. 
Under the expected-size prior, p(y E GIX) has no closed form solution valid for all n. 
However, except for very small values of n (e.g. < 3) and ri (e.g. < 0'i/1O), the following 
approximation holds to within 10% (and usually much less) error: 

(4) 

Fig. 2 (left column) illustrates the Bayesian learner's contours of equal probability of 
generalization (at p = 0.1 intervals), for different values of nand ri. The bold curve 
corresponds to p(y E GIX) = 0.5, a natural boundary for generalizing the concept. 
Integrating over all hypotheses weighted by their size-based probabilities yields a broad 
gradient of generalization for small n (row 1) that rapidly sharpens up to the smallest 
consistent hypothesis as n increases (rows 2-3), and that extends further along the dimension 
with a broader range ri of observations. This figure reflects an expected-size prior with 
0'1 = 0'2 = axiLwidthl2; using an uninformative prior produces a qualitatively similar plot. 

Related work: MIN and Weak Bayes. Two existing subset approaches to concept learning 
can be seen as variants of this Bayesian framework. The classic MIN algorithm generalizes 
no further than the smallest hypothesis in H that includes all the positive examples (Bruner 
et al., 1956; Feldman, 1997). MIN is a PAC learning algorithm for the rectangles task, and 
also corresponds to the maximum likelihood estimate in the Bayesian framework (Mitchell, 
1997). However, while it converges to the true concept as n becomes large (Fig. 2, row 3), 
it appears extremely conservative in generalizing from very limited data (Fig. 2, row 1). 

An earlier approach to Bayesian concept learning, developed independently in cognitive 
psychology (Shepard, 1987) and machine learning (Haussler et al., 1994; Mitchell, 1997), 
was an important inspiration for the framework of this paper. I call the earlier approach 
weak Bayes, because it embodies a different generative model that leads to a much weaker 
likelihood function than Eq. 1. While Eq. 1 came from assuming examples sampled 
randomly from the true concept, weak Bayes assumes the examples are generated by an 
arbitrary process independent of the true concept. As a result, the size principle for scoring 
hypotheses does not apply; all hypotheses consistent with the examples receive a likelihood 
of 1, instead of the factor of 1/lhln in Eq. 1. The extent of generalization is then determined 
solely by the prior; for example, under the expected-size prior, 

(5) 

Weak Bayes, unlike MIN, generalizes reasonably from just a few examples (Fig. 2, row 1). 
However, because Eq. 5 is independent of n or ri, weak Bayes does not converge to the 
true concept as the number of examples increases (Fig. 2, rows 2-3), nor does it generalize 
further along axes of greater variability. While weak Bayes is a natural model when the 
examples really are generated independently of the concept (e.g. when the learner himself 
or a random process chooses objects to be labeled "positive" or "negative" by a teacher), it 
is clearly limited as a model oflearning from deliberately provided positive examples. 

In sum, previous subset approaches each appear to capture a different aspect of how humans 
generalize concepts from positive examples. The broad similarity gradients that emerge 
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from weak Bayes seem most applicable when only a few broadly spaced examples have 
been observed (Fig. 2, row 1), while the sharp boundaries of the MIN rule appear more 
reasonable as the number of examples increases or their range narrows (Fig. 2, rows 2-3). 
In contrast, the Bayesian framework guided by the size principle automatically interpolates 
between these two regimes of similarity-based and rule-based generalization, offering the 
best hope for a complete model of human concept learning. 

3 Experimental data from human subjects 

This section presents empirical evidence that our Bayesian model - but neither MIN nor 
weak Bayes - can explain human behavior on the simple rectangle learning task. Subjects 
were given the task of guessing 2-dimensional rectangular concepts from positive examples 
only, under the cover story of learning about the range of healthy levels of insulin and 
cholesterol, as described in Section 1. On each trial of the experiment, several dots 
appeared on a blank computer screen. Subjects were told that these dots were randomly 
chosen examples from some arbitrary rectangle of "healthy levels," and their job was to 
guess that rectangle as nearly as possible by clicking on-screen with the mouse. The dots 
were in fact randomly generated on each trial, subject to the constraints ofthree independent 
variables that were systematically varied across trials in a (6 x 6 x 6) factorial design. The 
three independent variables were the horizontal range spanned by the dots (.25, .5, 1, 2, 4, 
8 units in a 24-unit-wide window), vertical range spanned by the dots (same), and number 
of dots (2,3,4,6, 10,50). Subjects thus completed 216 trials in random order. To ensure 
that subjects understood the task, they first completed 24 practice trials in which they were 
shown, after entering their guess, the "true" rectangle that the dots were drawn from. I 

The data from 6 subjects is shown in Fig. 3a, averaged across subjects and across the two 
directions (horizontal and vertical). The extent d of subjects' rectangles beyond r, the 
range spanned by the observed examples, is plotted as a function of rand n, the number 
of examples. Two patterns of generalization are apparent. First, d increases monotonically 
with r and decreases with n. Second, the rate of increase of d as a function of r is much 
slower for larger values of n. 

Fig. 3b shows that neither MIN nor weak Bayes can explain these patterns. MIN always 
predicts zero generalization beyond the examples - a horizontal line at d = 0 - for all values 
of rand n. The predictions of weak Bayes are also independent of rand n: d = 0" log 2, 
assuming subjects give the tightest rectangle enclosing all points y with p(y E G\X) > 0.5. 

Under the same assumption, Figs. 3c,d show our Bayesian model's predicted bounds on 
generalization using uninformative and expected-size priors, respectively. Both versions of 
the model capture the qualitative dependence of d on rand n, confirming the importance of 
the size principle in guiding generalization independent of the choice of prior. However, the 
uninformative prior misses the nonlinear dependence on r for small n, because it assumes 
an ideal scale invariance that clearly does not hold in this experiment (due to the fixed size 
of the computer window in which the rectangles appeared). In contrast, the expected-size 
prior naturally embodies prior knowledge about typical scale in its one free parameter 0". A 
reasonable value of 0" = 5 units (out of the 24-unit-wide window) yields an excellent fit to 
subjects' average generalization behavior on this task. 

4 Conclusions 

In developing a model of concept learning that is at once computationally principled and 
able to fit human behavior precisely, I hope to have shed some light on how people are able 

I Because dots were drawn randomly, the "true" rectangles that subjects saw during practice were 
quite variable and were rarely the "correct" response according to any theory considered here. Thus 
it is unlikely that this short practice was responsible for any consistent trends in subjects' behavior. 
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to infer the correct extent of a concept from only a few positive examples. The Bayesian 
model has two key components: (1) a generalization function that results from integrating 
the predictions of all hypotheses weighted by their posterior probability; (2) the assumption 
that examples are sampled from the concept to be learned, and not independently of the 
concept as previous weak Bayes models have assumed. Integrating predictions over the 
whole hypothesis space explains why either broad gradients of generalization (Fig. 2, row 
1) or sharp, rule-based generalization (Fig. 2, row 3) may emerge, depending on how 
peaked the posterior is. Assuming examples drawn randomly from the concept explains 
why learners do not weight all consistent hypotheses equally, but instead weight more 
specific hypotheses higher than more general ones by a factor that increases exponentially 
with the number of examples observed (the size principle). 

This work is being extended in a number of directions. Negative instances, when encoun
tered, are easily accomodated by assigning zero likelihood to any hypotheses containing 
them. The Bayesian formulation applies not only to learning rectangles, but to learning 
concepts in any measurable hypothesis space - wherever the size principle for scoring 
hypotheses may be applied. In Tenenbaum (1999), I show that the same principles enable 
learning number concepts and words for kinds of objects from only a few positive exam
ples. 2 I also show how the size principle supports much more powerful inferences than 
this short paper could demonstrate: automatically detecting incorrectly labeled examples, 
selecting relevant features, and determining the complexity of the hypothesis space. Such 
inferences are likely to be necessary for learning in the complex natural settings we are 
ultimately interested in. 
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Figure 2: Performance of three concept learning algorithms on the rectangle task. 
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Figure 3: Data from human subjects and model predictions for the rectangle task. 
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