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Abstract 

Symmetrically connected recurrent networks have recently been 
used as models of a host of neural computations. However, be
cause of the separation between excitation and inhibition, biolog
ical neural networks are asymmetrical. We study characteristic 
differences between asymmetrical networks and their symmetri
cal counterparts, showing that they have dramatically different 
dynamical behavior and also how the differences can be exploited 
for computational ends. We illustrate our results in the case of a 
network that is a selective amplifier. 

1 Introduction 

A large class of non-linear recurrent networks, including those studied by 
Grossberg,9 the Hopfield net,lO,l1 and many more recent proposals for the 
head direction system,27 orientation tuning in primarls visual cortex,25, 1,3, 18 eye 
position,20 and spatial location in the hippocampus 9 make a key simplifying 
assumption that the connections between the neurons are symmetric. Analysis 
is relatively straightforward in this case, since there is a Lyapunov (or energy) 
function4, 11 that often guarantees the convergence of the motion trajectory to an 
equilibrium point. However, the assumption of symmetry is broadly false. Net
works in the brain are almost never symmetrical, if for no other reason than the 
separation between excitation and inhibition. In fact, the question of whether ig
noring the polarity of the cells is simplification or over-simplication has yet to be 
fully answered. 

Networks with excitatory and inhibitory cells (EI systems, for short) have 
long been studied,6 for instance from the per~ective of pattern generation in 
invertebrates,23 and oscillations in the thalamus ' 24 and the olfactory systemP, 13 
Further, since the discovery of 40 Hz oscillations or synchronization amongst cells 
in primary visual cortex of anesthetised cat,8,5 oscillatory models of VI involving 
separate excitatory and inhibitory cells have also been popular, mainly from the 
perspective of how the oscillations can be created and sustained and how they can 
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be used for feature linking or binding.26,22,12 However the scope for computing 
with dynamically stable behaviors such as limit cycles is not yet clear. 

In this paper, we study the computational differences between a family of EI sys
tems and their symmetric counterparts (which we call S systems). One inspira
tion for this work is Li's nonlinear EI system modeling how the primary visual 
cortex performs contour enhancement and pre-attentive region segmentation. 14 , 15 
Studies by Braun2 had suggested that an S system model of the cortex can not 
perform contour enhancement unless additional (and biologically questionable) 
mechanisms are used. This posed a question about the true differences between 
EI and S systems that we answer. We show that EI systems can take advantage of 
dynamically stable modes that are not available to S systems. The computational 
significance of this result is discussed and demonstrated in the context of models 
of orientation selectivity. More details of this work, especially its significance for 
models of the primary visual cortical system, can be found in Li & Dayan (1999).16 

2 Theory and Experiment 

Consider a simple, but biologically significant, EI system in which excitatory and 
inhibitory cells come in pairs and there are no 'lon~-range' connections from the 
inhibitory cells14, 15 (to which the Lyapunov theory1 ,21 does not yet apply): 

Xi = -Xi + L: j Jijg(Xj) - h(Yd + Ii TyYi = -Yi + L: j Wijg(Xj) , (1) 

where Xi are the principal excitatory cells, which receive external or sensory in
put h and generate the network outputs g(Xi); Yi are the inhibitory interneurons 
(which are taken here as having no external input); function g(x) = [x - T]+ is 
the threshold non-linear activation function for the excitatory cells; h(y) is the ac
tivation function for the inhibitory cells (for analytical convenience, we use the 
linear form h(y) = (y - Ty) although the results are similar with the non-linear 
h(y) = [y - Ty]+); Ty is a time-constant for the inhibitory cells; and Jij and Wij are 
the output connections of the excitatory cells. Excitatory and inhibitory cells can 
also be perturbed by Gaussian noise. 

In the limit that the inhibitory cells are made infinitely fast (Ty = 0), we have 
Yi = L: j Wijg(Xj), leaving the excitatory cells to interact directly with each other: 

Xi -Xi + L: j Jijg(Xj) - h(L: j Wijg(Xj)) + Ii 
= -Xi + L:j(Jij - Wij)g(Xj) + Ii + /'i,i 

(2) 

(3) 

where /'i,i are constants. In this network, the neural connections Jij - Wij between 
any two cells X can be either excitatory or inhibitory, as in many abstract neural 
network models. When Jij = Jji and Wij = Wji, the network has symmetric 
connections. This paper compares EI systems with such connections and the cor
responding S systems. Since there are many ways of setting Jij and Wij in the EI 
system whilst keeping constant Jij - Wij , which is the effective weight in the S 
system, one may intuitively expect the EI system to have a broader computational 
range. 

The response of either system to given inputs is goverhed by the location and lin
ear stability of their fixed points. The S network is so defined as to have fixed 
points x (where x = 0 in equation 3) that are the same as those (x, y) of the EI 
network. In particular, x depends on inputs I (the input-output sensitivity) via 
ax = (IT- JDg + WDg)-1 dI, where IT is the identity matrix, J and Ware the 
connection matrices, and Dg is a diagonal matrix with elements [Dg]ii = g'(Xi). 
However, although the locations of the fixed points are the same for the EI and S 
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systems, the dynamical behavior of the systems about those fixed points are quite 
different, and this is what leads to their differing computational power. 

To analyse the stability of the fixed points, consider, for simplicity the case that Ty = 
1 in the EI system, and that the matrices JDg and WDg commute with eigenvalues 
>"i and >..J; respectively for k = 1, ... ,N where N is the dimension of x. The local 
deviations near the fixed points along each of the N modes will grow in time if the 
real parts of the following values are positive 

,fI = -1 + (1/2>..t ± (t (>..t)2 - >..J;)1/2 for the EI system ,r = -1 - >..J; + >..t for the S system 
In the case that>.. J and >.. ware real, then if the S system is unstable, then the EI 
system is also unstable. Forif-1+>..{ ->..r' > Othen(>..{)2-4>..r' > (>..{ -2?,and 
s02,fI = -2+>..{+{(>..f)2 _4>..W)I/2 > o. However, if the EI system is oscillatory, 
4>..w > (>..J)2, then the S system is stable since -1 +>..J - >..w < _l+>..J - (>..J)2 /4 = 
-(1 - >..J /2)2 ::; O. Hence the EI system can be unstable and oscillatory while the S 
system is stable. 

We are interested in the capacity of both systems to be selective amplifiers. This 
means that there is a class of inputs I that should be comparatively boosted by 
the system; whereas others should be comparatively suppressed. For instance, if 
the cells represent the orientation of a bar at a point, then the mode containing a 
unimodal, well-tuned, 'bump' in orientation space should be enhanced compared 
with poorly tuned inputs.2 ,1,18 However, if the cells represent oriented small 
bars at multiple points in visual space, then isolated smooth and strai?ht contours 
should be enhanced compared with extended homogeneous textures. 4,15 

The quality of the systems will be judged according to how much selective ampli
fication they can stably deliver. The critical trade-off is that the more the selected 
mode is amplified, the more likely it is that, when the input is non-specific, the 
system will be unstable to fluctuations in the direction of the selected mode, and 
therefore will hallucinate spurious answers. 

3 The Two Point System 

A particularly simple case to consider has just two neurons (for the S system; two 
pairs of neurons for the EI system) and weights 

J = (~o ~) W = (wo w ) 
) )0 w Wo 

The idea is that each node coarsely models a group of neurons, and the interac
tions between neurons within a group (jo and wo) are qualitatively different from 
interactions between neurons between groups (j and w). The form of selective am
plification here is that symmetric or ambiguous inputs Ia = 1(1, 1) should be sup
pressed compared with asymmetric inputs Ib = 1(1, 0) (and, equivalently, 1(0,1). 
In particular, given, la, the system should not spontaneously generate a response 
with Xl significantly different from X2· Define the fixed points to be Xl = x2 > T 
under Ia and x~ > T > x~ under Ib, where T is the threshold of the excitatory 
neurons. These relationships will be true across a wide range of input levels I. The 
ratio 

R = dxUdl = 1 + ((wo + w) - (jo + j)) = 1 + (w - j) 
dxlIdl 1 + (wo - jo) 1 + (wo - jo) 

(4) 

of the average relative responses as the input level 1 changes is a measure of how 
the system selectively amplifies the preferred or consistent inputs against ambigu
ous ones. This measure is appropriate only when the fluctuations of the system 
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Figure 1: Phase portraits for the S system in the 2 point case. A;B) Evolution in response to IG ex (1, 1) 
and Ib ex (1,0) for parameters for which the response to Ia is stably symmetric. C;D) Evolution in 
response to Ia and Ib for parameters for which the symmetric response to Ia is unstable, inducing two 
extra equilibrium points. The dotted lines show the thresholds T for g(x). 

from the fixed points xa and xb are well behaved. We will show that this require
ment permits larger values of R in the EI system than the S system, suggesting that 
the EI system can be a more powerful selective amplifier. 

In the S system, the stabilities are governed by,S = -(1 + Wo - jo) for the single 
mode of deviation Xl - x~ around fixed point band,f = - (1 + (wo ± w) - (jo ± j)) 
for the two modes of deviation X± == (Xl - xl) ± (X2 - x~) around fixed point 
a. Since we only consider cases when the input-output relationship dX/ dI of the 
fixed points is well defined, this means,s < a and,~ < O. However, for some 
interaction parameters, there are two extra (uneven) fixed points x~ =1= x~ for (the 
even) input fa. Dynamic systems theory dictates these two uneven fixed points 
will be stable and that they will appear when the '-' mode of the perturbation 
around the even fixed point x~ = x~ is unstable. The system breaks symmetry 
in inputs, ie the motion trajectory diverges from the (unstable) even fixed point to 
one of the (stable) uneven ones. To avoid such cases, it is necessary that,~ < O. 
Combining this condition with equation 4 and,s < a leads to a upper bound on 
the amplification ratio R S < 2. Figure 1 shows phase portraits and the equilibrium 
pOints of the S system under input fa and fb for the two different system parameter 
regions. 

As we have described, the EI system has exactly the same fixed points as the S sys
tem, but they are more unstable. The stability around the symmetric fixed point 
under Ia is governed by ,f:I = -1+(jo±j)/2±J(jo ± j)2/4 - (wo ± w), while that 
of the asymmetric fixed pointunderIb orIa by ,EI = -1+jo/2±JHJ4 - woo Con
sequently, when there are three fixed points under la, all of them can be unstable 
in the EI system, and the motion trajectory cannot converge to any of them. In this 
case, when both the' +' and '-' modes around the symmetric fixed point x~ = x~ 
are unstable, the global dynamics constrains the motion trajectory to a limit cycle 
around the fixed points. If x~ ~ x~ on this limit cycle, then the EI system will 
not break symmetry, even though the selective amplification ratio R > 2. Figure 2 
demonstrates the performance of the EI system in this regime. Figure 2A;B show 
various aspects of the response to input P which should be comparatively sup
pressed. The system oscillates in such a way that Xl and X2 tend to be extremely 
similar (including being synchronised). Figure 2C;D show the same aspects of 
the response to Ib, which should be amplified. Again the network oscillates, and, 
although g(X2) is not driven completely to a (it peaks at 15), it is very strongly 
dominated by g(xd, and further, the overall response is much stronger than in 
figure 2A;B. 

The pertinent difference between the EI and S systems is that while the S system 
(when h(y) is linear) can only roll down the energy landscape to a stable fixed 



278 

Response to I a = 1{1 , 1) 
A B 

80 

80 

c 

Z. Li and P Dayan 

Response to Ib = 1(1,0) 
D 

40 -200 10 20 time 30 40 50 0 0 1000 x 2000 3000 100 lime 200 :m 

Figure 2: Projections of the response of the EI system. AiB) E~olution of response to la. A) Xl VS Yl 

and B) g(xl) - g(X2) (solid); g(X!}+g(X2) (dotted) across time show that the Xl = X2 mode dominates 
and the growth of X l - X2 is strongly suppressed. C;D) Evolution of the response to lb. Here, the 
response of Xl always dominates that of X2 over oscillations. The difference between g(Xl )+g(X2) and 
g(Xl) - g(X2) is too small to be evident on the figure. Note the difference in scales between AiB and 
C;D. Herejo = 2.1 ; j = O.4;wo = 1.11 ;w = 0.9. 

point and break the input symmetry, the EI system can resort to global limit cycles 
Xl (t) ~ X2(t) between unstable fixed points and maintain input symmetry. This is 
often (robustly over a large range of parameters) the case even when the '-' mode 
is locally more unstable (at the symmetric fixed point) than the ' +' mode, because 
the' -' mode is much strongly suppressed when the motion trajectory enters the 
subthreshold region Xl < T and X2 < T. As we can see in figure 2A;B, this acts 
to suppress any overall growth in the' -' mode. Since the asymmetric fixed point 
under Ib is just as unstable as that under la, the El system responds to asymmetric 
input Ib also by a stable limit cycle around the asymmetric fixed point. 

Since the response of the system in response to either pattern is oscillatory, there are 
various reasonable ways of evaluating the relative response ratio. Using the mean 
responses of the system during a cycle to define X, the selective amplification ratio 
in figure 2 is REI = 97, which is significantly higher than the R S = 2 available from 
the S system. This is a simple existence proof of the superiority of the EI system for 
amplification, albeit at the expense of oscillations. In fact, in this two point case, it 
can be shown that any meaningful behavior of the S system (including symmetry 
breaking) can be qualitatively replicated in the EI system, but not vice-versa. 

4 The Orientation System 

Symmetric recurrent networks have recently been investigated in great depth for 
representing and calculating a wide variety of quantities, including orientation 
tuning. The idea behind the recurrent networks is that they should take noisy (and 
perhaps weakly tuned) input and selectively amplify the component that repre
sents an orientation 0 in the input, leaving a tuned pattern of excitation across the 
population that faithfully represents the underlying input. Based on the analysis 
above, we can expect that if an S network amplifies a tuned input enough, then it 
will break input symmetry given an untuned input and thus hallucinate a tuned 
response. However, an EI system, in the same oscillatory regime as for the two 
point system, can maintain untuned and suppressed response to untuned inputs. 

We designed a particular El system with a high selective amplification factor 
for tuned inputs 1(0). In this case, units Xi, Yi have preferred orientations Oi = 
(i - N/2)7r/N for i = 1 .. . n. the connection matrices J is Toplitz with Gaussian 
tuning, and, for simplicity, [W]ij does not depend on i,j. Figure 3B (and inset) 
shows the output of two units in the network in response to a tuned input, show
ing the nature of the oscillations and the way that selectivity builds up over the 
course of each period. Figure 3C shows the activities of all the units at three partic
ular phases of the oscillation. Figure 3A shows how the mean activity of the most 
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Figure 3: The Gaussian orientation network. A) Mean response of the 8; = 0° unit in the network as 
a function of a (untuned) or b (tuned) with a log scale. B) Activity of the 8i = 0° (solid) and 8; = 30° 
(dashed) units in the network over the course of the positive part of an oscillation. Inset - activity of 
these units over all time. C) Activity of all the units at the three times shown as (i), (ii) and (iii) in (B) 
(i) (dashed) is in the rising phase of the oscillation; (ii) (solid) is at the peak; and (iii) (dotted) is during 

the falling phase. Here, the input is Ii = a + be-IJ[ /20'2, with (J" = 13°, and the Toplitz weights are 

J;j = (3 + 21e-( IJi- IJj )2/20',2)/N, with (J"' = 20° and Wij = 23.S/N. 

activated unit scales with the levels of tuned and untuned input. The network 
amplifies the tuned inputs dramatically more - note the logarithmic scale. The S 
system breaks symmetry to the untuned input (b = 0) for these weights. If the 
weights are scaled uniformly by a factor of 0.22, then the S system is appropriately 
stable. However, the magnification ratio is 4.2 rather than something greater than 
1000 in the EI system. 

The orientation system can be understood to a large qualitative degree by looking 
at its two-point cousins. Many of the essential constraints on the system are de
termined by the behavior of the system when the mode with Xi = Xj dominates, 
in which case the complex non-linearities induced by orientation tuning or cut off 
and its equivalents are irrelevant. Let J(I) and W(I) for (angular) frequency f 
be the Fourier transforms of J(i - j) == [J]ij and W(i - j) == [WLj and define 
)..(J) = Re{ -1 + J(I)/2 + iJ(W(I) - J2(1)/4)}. Then, let 1* >0 be the frequency 
such that )..(1*) 2: )..(1) for all f > O. This is the non-translation-invariant mode 
that is most likely to cause instabilities for translation invariant behavior. A two 
point system that closely corresponds to the full system can be found by solving 
the simultaneous equations: 

jo + j = J(O) WO + w = W(O) jo - j = J(J*) WO - w = W(I*) 

This design equates the Xl = X2 mode in the two point system with the f = 0 mode 
in the orientation system and the Xl = -X2 mode with the f = 1* mode. For smooth 
J and W, 1* is often the smallest or one of the smallest non-zero spatial frequen
cies. It is easy to see that the two systems are exactly equivalent in the translation 
invariant mode Xi = Xj under translation invariant input Ii = Ij in both the lin
ear and nonlinear regimes. The close correspondence between the two systems in 
other dynamic regimes is supported by simulation results.16 Quantitatively, how
ever, the amplification ratio differs between the two systems. 

5 Conclusions 

We have studied the dynamical behavior of networks with symmetrical and asym
metrical connections and have shown that the extra degrees of dynamical freedom 
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of the latter can be put to good computational use, eg global dynamic stability via 
local instability. Many applications of recurrent networks involve selective am
plification - and the selective amplification factors for asymmetrical networks can 
greatly exceed those of symmetrical networks. We showed this in the case of orien
tation selectivity. However, it was originally inspired by a similar result in contour 
enhancement and texture segregation for which the activity of isolated oriented 
line elements should be enhanced if they form part of a smooth contour in the 
input and suppressed if they form part of an extended homogeneous texture. Fur
ther, the output should be homogeneous if the input is homogeneous (in the same 
way that the orientation network should not hallucinate orientations from untuned 
input). In this case, similar analysis16 shows that stable contour enhancement is 
limited to just a factor of 3.0 for the S system (but not for the EI system), suggest
ing an explanation for the poor performance of a slew of S systems in the literature 
designed for this purpose. We used a very simple system with just two pairs of 
neurons to develop analytical intuitions which are powerful enough to guide our 
design of the more complex systems. We expect that the details of our model, with 
the exact pairing of excitatory and inhibitory cells and the threshold non-linearity, 
are not crucial for the results. 
Inhibition in the cortex is, of course, substantially more complicated than we have 
suggested. In particular, inhibitory cells do have somewhat faster (though finite) 
time constants than excitatory cells, and are also not so subject to short term plas
ticity effects such as spike rate adaptation. Nevertheless, oscillations of various 
sorts can certainly occur, suggesting the relevance of the computational regime 
that we have studied. 
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