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Abstract 

In this paper, the technique of stacking, previously only used for 
supervised learning, is applied to unsupervised learning. Specifi
cally, it is used for non-parametric multivariate density estimation, 
to combine finite mixture model and kernel density estimators. Ex
perimental results on both simulated data and real world data sets 
clearly demonstrate that stacked density estimation outperforms 
other strategies such as choosing the single best model based on 
cross-validation, combining with uniform weights, and even the sin
gle best model chosen by "cheating" by looking at the data used 
for independent testing. 

1 Introduction 

Multivariate probability density estimation is a fundamental problem in exploratory 
data analysis, statistical pattern recognition and machine learning. One frequently 
estimates density functions for which there is little prior knowledge on the shape 
of the density and for which one wants a flexible and robust estimator (allowing 
multimodality if it exists). In this context, the methods of choice tend to be finite 
mixture models and kernel density estimation methods. For mixture modeling, 
mixtures of Gaussian components are frequently assumed and model choice reduces 
to the problem of choosing the number k of Gaussian components in the model 
(Titterington, Smith and Makov, 1986) . For kernel density estimation, kernel 
shapes are typically chosen from a selection of simple unimodal densities such as 
Gaussian, triangular, or Cauchy densities, and kernel bandwidths are selected in a 
data-driven manner (Silverman 1986; Scott 1994). 

As argued by Draper (1996), model uncertainty can contribute significantly to pre-
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dictive error in estimation. While usually considered in the context of supervised 
learning, model uncertainty is also important in unsupervised learning applications 
such as density estimation. Even when the model class under consideration contains 
the true density, if we are only given a finite data set , then there is always a chance 
of selecting the wrong model. Moreover , even if the correct model is selected, there 
will typically be estimation error in the parameters of that model. These difficulties 
are summarized by wri ting 

P(f I D) = L J dOMP(OM I D,M) x P(M I D) x fM,9M' (1) 
M 

where f is a density, D is the data set, M is a model, and OM is a set of values for 
the parameters for model M. The posterior probability P( M I D) reflects model 
uncertainty, and the posterior P(OM I D , M) reflects uncertainty in setting the 
parameters even once one knows the model. Note that if one is privy to P(M, OM), 
then Bayes' theorem allows us to write out both of our posteriors explicitly, so that 
we explicitly have P(f I D) (and therefore the Bayes-optimal density) given by 
a weighted average of the fM ,9M" (See also Escobar and West (1995)). However 
even when we know P(M, OM), calculating the combining weights can be difficult . 
Thus, various approximations and sampling techniques are often used, a process 
that necessarily introduces extra error (Chickering and Heckerman 1997) . More 
generally, consider the case of mis-specified models where the model class does not 
include the true model, so our presumption for P(M, OM) is erroneous. In this case 
often one should again average. 

Thus, a natural approach to improving density estimators is to consider empirically
driven combinations of multiple density models. There are several ways to do this , 
especially if one exploits previous combining work in supervised learning. For exam
ple, Ormontreit and Tresp (1996) have shown that "bagging" (uniformly weighting 
different parametrizations of the same model trained on different bootstrap sam
ples) , originally introduced for supervised learning (Breiman 1996a) , can improve 
accuracy for mixtures of Gaussians with a fixed number of components. Another 
supervised learning technique for combining different types of models is "stacking" 
(Wolpert 1992), which has been found to be very effective for both regression and 
classification (e .g., Breiman (1996b)) . This paper applies stacking to density esti
mation , in particular to combinations involving kernel density estimators together 
with finite mixture model estimators. 

2 Stacked Density Estimation 

2.1 Background on Density Estimation with Mixtures and Kernels 

Consider a set of d real-valued random variables X = {Xl, . . . , xd} Upper case 
symbols denote variable name.s (such as Xi) and lower-case symbols a particular 
value of a variable (such as xJ). ~ is a realization of the vector variable X. J(~) 
is shorthand for f(X = ~) and represents the joint probability distribution of X. 
D = {~1 ' .. . ' ~N} is a training data set where each sample ~i' 1 :::; i :::; N is an 
independently drawn sample from the underlying density function J(~) . 

A commonly used model for density estimation is the finite mixture model with k 
components, defined as: 

k 

fk(~J = L aigi(~), (2) 
i=l 
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where I:~=1 Ctj = 1. The component gj's are usually relatively simple unimodal 
densities such as Gaussians. Density estimation with mixtures involves finding the 
locations, shapes, and weights of the component densities from the data (using 
for example the Expectation-Maximization (EM) procedure). Kernel density esti
mation can be viewed as a special case of mixture modeling where a component 
is centered at each data point, given a weight of 1/ N, and a common covariance 
structure (kernel shape) is estimated from the data. 

The quality of a particular probabilistic model can be evaluated by an appropriate 
scoring rule on independent out-of-sample data, such as the test set log-likelihood 
(also referred to as the log-scoring rule in the Bayesian literature). Given a test 
data set Dte3t , the test log likelihood is defined as 

logf(Dte3tlfk(~)) = l: logfk(~i) (3) 
Dteof 

This quantity can play the role played by classification error in classification or 
squared error in regression. For example, cross-validated estimates of it can be 
used to find the best number of clusters to fit to a given data set (Smyth, 1996) . 

2.2 Background on Stacking 

Stacking can be used either to combine models or to improve a single model. In 
the former guise it proceeds as follows . First, subsamples of the training set are 
formed. Next the models are all trained on one subsample and resultant joint 
predictive behavior on another subs ample is observed, together with information 
concerning the optimal predictions on the elements in that other subsample. This 
is repeated for other pairs of subsamples of the training set. Then an additional 
("stacked" ) model is trained to learn, from the subsample-based observations, the 
relationship between the observed joint predictive behavior of the models and the 
optimal predictions. Finally, this learned relationship is used in conjunction with 
the predictions of the individual models being combined (now trained on the entire 
data set) to determine the full system's predictions. 

2.3 Applying Stacking to Density Estimation 

Consider a set of M different density models, fm(~), 1 ~ m ~ M. In this paper each 
of these models will be either a finite mixture with a fixed number of component 
densities or a kernel density estimate with a fixed kernel and a single fixed global 
bandwidth in each dimension. (In general though no such restrictions are needed.) 
The procedure for stacking the M density models is as follows: 

1. Partition the training data set D v times, exactly as in v-fold cross valida
tion (we use v = 10 throughout this paper), and for each fold: 

(a) Fit each of the M models to the training portion ofthe partition of D . 

(b) Evaluate the likelihood of each data point in the test partition of D, 
for each of the M fitted models. 

2. After doing this one has M density estimates for each of N data points, 
and therefore a matrix of size N x M, where each entry is fm(~) , the 
out-of-sample likelihood of the mth model on the ith data point. 

3. Use that matrix to estimate the combination coefficients {Pl, ... , PM} that 
maximize the log-likelihood at the points ~i of a stacked density model of 
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the form: 
M 

fstacked (.~) = I': f3m f m (~J. 
m=l 

Since this is itself a mixture model, but where the fm(~i) are fixed, the EM 
algorithm can be used to (easily) estimate the f3m. 

4. Finally, re-estimate the parameters of each of the m component density 
models using all of the training data D. The stacked density model is then 
the linear combination of those density models, with combining coefficients 
given by the f3m. 

3 Experimental Results 

In our stacking experiments M = 6: three triangular kernels with bandwidths of 
0.1,0.4, and 1.5 of the standard deviation (of the full data set) in each dimension, 
and three Gaussian mixture models with k = 2,4, and 8 components. This set of 
models was chosen to provide a reasonably diverse representational basis for stack
ing. We follow roughly the same experimental procedure as described in Breiman 
(1996b) for stacked regression: 

• Each data set is randomly split into training and test partitions 50 times, 
where the test partition is chosen to be large enough to provide reasonable 
estimates of out-of-sample log-likelihood. 

• The following techniques are run on each training partition: 

1. Stacking: The stacked combination of the six constituent models. 
2. Cross-Validation: The single best model as indicated by the max

imum likelihood score of the M = 6 single models in the N x M 
cross-validated table of likelihood scores. 

3. Uniform Weighting: A uniform average of the six models. 
4. "Cheating:" The best single model, i.e., the model having the largest 

likelihood on the test data partition, 
5. Truth: The true model structure, if the true model is one of the six 

generating the data (only valid for simulated data). 

• The log-likelihoods of the models resulting from these techniques are cal
culated on the test data partition. The log-likelihood of a single Gaussian 
model (parameters determined on the training data) is subtracted from 
each model's log-likelihood to provide some normalization of scale. 

3.1 Results on Real Data Sets 

Four real data sets were chosen for experimental evaluation. The diabetes data 
set consists of 145 data points used in Gaussian clustering studies by Banfield and 
Raftery (1991) and others. Fisher's iris data set is a classic data set in 4 dimensions 
with 150 data points. Both of these data sets are thought to consist roughly of 
3 clusters which can be reasonably approximated by 3 Gaussians. The Barney 
and Peterson vowel data (2 dimensions, 639 data points) contains 10 distinct vowel 
sounds and so is highly multi-modal. The star-galaxy data (7 dimensions, 499 data 
points) contains non-Gaussian looking structure in various 2d projections. 

Table 1 summarizes the results. In all cases stacking had the highest average log
likelihood, even out-performing "cheating" (the single best model chosen from the 
test data). (Breiman (1996b) also found for regression that stacking outperformed 
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Table 1: Relative performance of stacking multiple mixture models, for various data 
sets, measured (relative to the performance of a single Gaussian model) by mean 
log-likelihood on test data partitions. The maximum for each data set is underlined. 

II Data Set I Gaussian I Cross-Validation I "Cheating" I Uniform I Stacking II 
Diabetes -352.9 27.8 30.4 29.2 31.8 

Fisher's Iris -52.6 18.3 21.2 18.3 22.5 
Vowel 128.9 53.5 54.6 40.2 55 .8 

Star-Galaxy -257.0 678.9 721.6 789.1 888.9 

Table 2: Average across 20 runs of the stacked weights found for each constituent 
model. The columns with h = .. . are for the triangular kernels and the columns 
with k = . .. are for the Gaussian mixtures. 

II Data Set I h=O.1 I h=O.4 I h=1.5 I k = 2 I k = 4 I k = 8 1/ 
DIabetes 0.01 0.09 0.03 0.13 0.41 0.32 

Fisher's Iris 0.02 0.16 0.00 0.26 0.40 0.16 
Vowel 0.00 0.25 0.00 0.02 0.20 0.53 

Star-Galaxy 0.00 0.04 0.03 0.03 0.27 0.62 

the "cheating" method.) We considered two null hypotheses: stacking has the same 
predictive accuracy as cross-validation, and it has the same accuracy as uniform 
weighting. Each hypothesis can be rejected with a chance ofless than 0.01% of being 
incorrect, according to the Wilcoxon signed-rank test i.e., the observed differences 
in performance are extremely strong even given the fact that this particular test is 
not strictly applicable in this situation. 

On the vowel data set uniform weighting performs much worse than the other 
methods: it is closer in performance to stacking on the other 3 data sets. On three 
of the data sets, using cross-validation to select a single model is the worst method. 
"Cheating" is second-best to stacking except on the star-galaxy data, where it 
is worse than uniform weighting also: this may be because the star-galaxy data 
probably induces the greatest degree of mis-specification relative to this 6-model 
class (based on visual inspection). 

Table 2 shows the averages of the stacked weight vectors for each data set. The 
mixture components generally got higher weight than the triangular kernels. The 
vowel and star-galaxy data sets have more structure than can be represented by any 
of the component models and this is reflected in the fact that for each most weight 
is placed on the most complex mixture model with k = 8. 

3.2 Results on Simulated Data with no Model Mis-Specification 

We simulated data from a 2-dimensional 4-Gaussian mixture model with a reason
able degree of overlap (this is the data set used in Ripley (1994) with the class 
labels removed) and compared the same models and combining/selection schemes 
as before, except that "truth" is also included, i.e., the scheme which always se
lects the true model structure with k = 4 Gaussians. For each training sample 
size, 20 different training data sets were simulated, and the mean likelihood on an 
independent test data set of size 1000 was reported. 
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Figure 1: Plot of mean log-likelihood (relative to a single Gaussian model) for 
various density estimation schemes on data simulated from a 4-component Gaussian 
mixture. 

Note that here we are assured of having the true model in the set of models be
ing considered, something that is presumably never exactly the case in the real 
world (and presumably was not the case for the experiments recounted in Table 
1.) Nonetheless, as indicated in (Figure 1), stacking performed about the same as 
the "cheating" method and significantly outperformed the other methods, includ
ing "truth." (Results where some of the methods had log-likelihoods lower than the 
single Gaussian are not shown for clarity). 

The fact that "truth" performed poorly on the smaller sample sizes is due to the fact 
that with smaller sample sizes it was often better to fit a simpler model with reliable 
parameter estimates (which is what "cheating" typically would do) than a more 
complex model which may overfit (even when it is the true model structure). As the 
sample size increases, both "truth" and cross-validation approach the performance 
of "cheating" and stacking: uniform weighting is universally poorer as one would 
expect when the true model is within the model class. The stacked weights at the 
different sample sizes (not shown) start out with significant weight on the triangular 
kernel model and gradually shift to the k = 2 Gaussian mixture model and finally 
to the (true) k = 4 Gaussian model as sample size grows. Thus, stacking is seen 
to incur no penalty when the true model is within the model class being fit. In 
fact the opposite is true; for small sample sizes stacking outperforms other density 
estimation techniques which place full weight on a single (but poorly parametrized) 
model. 

4 Discussion and Conclusions 

Selecting a global bandwidth for kernel density estimation is still a topic of debate 
among statisticians. Stacking allows the possibility of side-stepping the issue of 
a single bandwidth by combining kernels with different bandwidths and different 
kernel shapes. A stacked combination of such kernel estimators is equivalent to using 
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a single composite kernel that is a convex combination of the underlying kernels. 
For example, kernel estimators based on finite support kernels can be regularized 
in a data-driven manner by combining them with infinite support kernels. The key 
point is that the shape and width of the resulting "effective" kernel i8 driven by the 
data. 

It is also worth noting that by combining Gaussian mixture models with different 
k values one gets a hierarchical "mixture of mixtures" model. This hierarchical 
model can provide a natural multi-scale representation of the data, which is clearly 
similar in spirit to wavelet density estimators, although the functional forms and 
estimation methodologies for each technique can be quite different. There is also 
a representational similarity to Jordan and Jacob's (1994) "mixture of experts" 
model where the weights are allowed to depend directly on the inputs. Exploiting 
that similarity, one direction for further work is to investigate adaptive weight 
parametrizations in the stacked density estimation context. 
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