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Abstract 

A novel neural network model of pre-attention processing in visual­
search tasks is presented. Using displays of line orientations taken 
from Wolfe's experiments [1992], we study the hypothesis that the 
distinction between parallel versus serial processes arises from the 
availability of global information in the internal representations of 
the visual scene. The model operates in two phases. First, the 
visual displays are compressed via principal-component-analysis. 
Second, the compressed data is processed by a target detector mod­
ule in order to identify the existence of a target in the display. Our 
main finding is that targets in displays which were found exper­
imentally to be processed in parallel can be detected by the sys­
tem, while targets in experimentally-serial displays cannot . This 
fundamental difference is explained via variance analysis of the 
compressed representations, providing a numerical criterion distin­
guishing parallel from serial displays. Our model yields a mapping 
of response-time slopes that is similar to Duncan and Humphreys's 
"search surface" [1989], providing an explicit formulation of their 
intuitive notion of feature similarity. It presents a neural realiza­
tion of the processing that may underlie the classical metaphorical 
explanations of visual search. 
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1 Introduction 

This paper presents a neural-model of pre-attentive visual processing. The model 
explains why certain displays can be processed very fast, "in parallel" , while others 
require slower, "serial" processing, in subsequent attentional systems. Our approach 
stems from the observation that the visual environment is overflowing with diverse 
information, but the biological information-processing systems analyzing it have 
a limited capacity [1]. This apparent mismatch suggests that data compression 
should be performed at an early stage of perception, and that via an accompa­
nying process of dimension reduction, only a few essential features of the visual 
display should be retained. We propose that only parallel displays incorporate 
global features that enable fast target detection, and hence they can be processed 
pre-attentively, with all items (target and dis tractors) examined at once. On the 
other hand, in serial displays' representations, global information is obscure and 
target detection requires a serial, attentional scan of local features across the dis­
play. Using principal-component-analysis (peA), our main goal is to demonstrate 
that neural systems employing compressed, dimensionally reduced representations 
of the visual information can successfully process only parallel displays and not se­
rial ones. The sourCe of this difference will be explained via variance analysis of the 
displays' projections on the principal axes. 

The modeling of visual attention in cognitive psychology involves the use of 
metaphors, e.g., Posner's beam of attention [2]. A visual attention system of a 
surviving organism must supply fast answers to burning issues such as detecting 
a target in the visual field and characterizing its primary features. An attentional 
system employing a constant-speed beam of attention [3] probably cannot perform 
such tasks fast enough and a pre-attentive system is required. Treisman's feature 
integration theory (FIT) describes such a system [4]. According to FIT, features 
of separate dimensions (shape, color, orientation) are first coded pre-attentively in 
a locations map and in separate feature maps, each map representing the values of 
a particular dimension. Then, in the second stage, attention "glues" the features 
together conjoining them into objects at their specified locations. This hypothesis 
was supported using the visual-search paradigm [4], in which subjects are asked 
to detect a target within an array of distractors, which differ on given physical di­
mensions such as color, shape or orientation. As long as the target is significantly 
different from the distractors in one dimension, the reaction time (RT) is short and 
shows almost no dependence on the number of distractors (low RT slope). This 
result suggests that in this case the target is detected pre-attentively, in parallel. 
However, if the target and distractors are similar, or the target specifications are 
more complex, reaction time grows considerably as a function of the number of 
distractors [5, 6], suggesting that the displays' items are scanned serially using an 
attentional process. 

FIT and other related cognitive models of visual search are formulated on the con­
ceptual level and do not offer a detailed description of the processes involved in 
transforming the visual scene from an ordered set of data points into given values 
in specified feature maps. This paper presents a novel computational explanation 
of the source of the distinction between parallel and serial processing, progressing 
from general metaphorical terms to a neural network realization. Interestingly, we 
also come out with a computational interpretation of some of these metaphorical 
terms, such as feature similarity. 
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2 The Model 

We focus our study on visual-search experiments of line orientations performed by 
Wolfe et. al. [7], using three set-sizes composed of 4, 8 and 12 items. The number of 
items equals the number of dis tractors + target in target displays, and in non-target 
displays the target was replaced by another distractor, keeping a constant set-size. 
Five experimental conditions were simulated: (A) - a 20 degrees tilted target among 
vertical distractors (homogeneous background). (B) - a vertical target among 20 
degrees tilted distractors (homogeneous background). (C) - a vertical target among 
heterogeneous background ( a mixture of lines with ±20, ±40 , ±60 , ±80 degrees 
orientations). (E) - a vertical target among two flanking distractor orientations (at 
±20 degrees), and (G) - a vertical target among two flanking distractor orientations 
(±40 degrees). The response times (RT) as a function of the set-size measured by 
Wolfe et. al. [7] show that type A, Band G displays are scanned in a parallel 
manner (1.2, 1.8,4.8 msec/item for the RT slopes), while type C and E displays are 
scanned serially (19.7,17.5 msec/item). The input displays of our system were pre­
pared following Wolfe's prescription: Nine images of the basic line orientations were 
produced as nine matrices of gray-level values. Displays for the various conditions 
of Wolfe's experiments were produced by randomly assigning these matrices into 
a 4x4 array, yielding 128x100 display-matrices that were transformed into 12800 
display-vectors. A total number of 2400 displays were produced in 30 groups (80 
displays in each group): 5 conditions (A, B, C, E, G ) x target/non-target x 3 
set-sizes (4,8, 12). 

Our model is composed of two neural network modules connected in sequence as 
illustrated in Figure 1: a peA module which compresses the visual data into a set 
of principal axes, and a Target Detector (TD) module. The latter module uses the 
compressed data obtained by the former module to detect a target within an array 
of distractors. The system is presented with line-orientation displays as described 
above. 
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Figure 1: General architecture of the model 

For the PCA module we use the neural network proposed by Sanger, with the 
connections' values updated in accordance with his Generalized Hebbian Algorithm 
(GHA) [8]. The outputs of the trained system are the projections of the display­
vectors along the first few principal axes, ordered with respect to their eigenvalue 
magnitudes. Compressing the data is achieved by choosing outputs from the first 
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few neurons (maximal variance and minimal information loss). Target detection in 
our system is performed by a feed-forward (FF) 3-layered network, trained via a 
standard back-propagation algorithm in a supervised-learning manner. The input 
layer of the FF network is composed of the first eight output neurons of the peA 
module. The transfer function used in the intermediate and output layers is the 
hyperbolic tangent function. 

3 Results 

3.1 Target Detection 

The performance of the system was examined in two simulation experiments. In 
the first, the peA module was trained only with "parallel" task displays, and in the 
second, only with "serial" task displays. There is an inherent difference in the ability 
of the model to detect targets in parallel versus serial displays . In parallel task 
conditions (A, B, G) the target detector module learns the task after a comparatively 
small number (800 to 2000) of epochs, reaching performance level of almost 100%. 
However, the target detector module is not capable of learning to detect a target 
in serial displays (e, E conditions) . Interestingly, these results hold (1) whether 
the preceding peA module was trained to perform data compression using parallel 
task displays or serial ones, (2) whether the target detector was a linear simple 
perceptron, or the more powerful, non-linear network depicted in Figure 1, and (3) 
whether the full set of 144 principal axes (with non-zero eigenvalues) was used. 

3.2 Information Span 

To analyze the differences between parallel and serial tasks we examined the eigen­
values obtained from the peA of the training-set displays. The eigenvalues of 
condition B (parallel) displays in 4 and 12 set-sizes and of condition e (serial-task) 
displays are presented in Figure 2. Each training set contains a mixture of target 
and non-target displays. 
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Figure 2: Eigenvalues spectrum of displays with different set-sizes, for parallel and 
serial tasks. Due to the sparseness of the displays (a few black lines on white 
background), it takes only 31 principal axes to describe the parallel training-set in 
full (see fig 2a. Note that the remaining axes have zero eigenvalues, indicating that 
they contain no additional information.), and 144 axes for the serial set (only the 
first 50 axes are shown in fig 2b). 
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As evident, the eigenvalues distributions of the two display types are fundamentally 
different: in the parallel task, most of the eigenvalues "mass" is concentrated in the 
first few (15) principal axes, testifying that indeed, the dimension of the parallel 
displays space is quite confined. But for the serial task, the eigenvalues are dis­
tributed almost uniformly over 144 axes. This inherent difference is independent of 
set-size: 4 and 12-item displays have practically the same eigenvalue spectra. 

3.3 Variance Analysis 

The target detector inputs are the projections of the display-vectors along the first 
few principal axes. Thus, some insight to the source of the difference between 
parallel and serial tasks can be gained performing a variance analysis on these 
projections. The five different task conditions were analyzed separately, taking a 
group of 85 target displays and a group of 85 non-target displays for each set-size. 
Two types of variances were calculated for the projections on the 5th principal axis: 
The "within groups" variance, which is a measure of the statistical noise within 
each group of 85 displays, and the "between groups" variance, which measures the 
separation between target and non-target groups of displays for each set-size. These 
variances were averaged for each task (condition), over all set-sizes. The resulting 
ratios Q of within-groups to between-groups standard deviations are: QA = 0.0259, 
QB = 0.0587 ,and Qa = 0.0114 for parallel displays (A, B, G), and QE = 0.2125 
Qc = 0.771 for serial ones (E, C). 

As evident, for parallel task displays the Q values are smaller by an order of mag­
nitude compared with the serial displays, indicating a better separation between 
target and non-target displays in parallel tasks. Moreover, using Q as a criterion 
for parallel/serial distinction one can predict that displays with Q < < 1 will be 
processed in parallel, and serially otherwise, in accordance with the experimental 
response time (RT) slopes measured by Wolfe et. al. [7]. This differences are further 
demonstrated in Figure 3, depicting projections of display-vectors on the sub-space 
spanned by the 5, 6 and 7th principal axes. Clearly, for the parallel task (condition 
B), the PCA representations of the target-displays (plus signs) are separated from 
non-target representations (circles), while for serial displays (condition C) there is 
no such separation. It should be emphasized that there is no other principal axis 
along which such a separation is manifested for serial displays. 
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Figure 3: Projections of display-vectors on the sub-space spanned by the 5, 6 and 
7th principal axes. Plus signs and circles denote target and non-target display­
vectors respectively, (a) for a parallel task (condition B), and (b) for a serial task 
(condition C). Set-size is 8 items. 
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While Treisman and her co-workers view the distinction between parallel and se­
rial tasks as a fundamental one, Duncan and Humphreys [5] claim that there is 
no sharp distinction between them, and that search efficiency varies continuously 
across tasks and conditions. The determining factors according to Duncan and 
Humphreys are the similarities between the target and the non-targets (T-N sim­
ilarities) and the similarities between the non-targets themselves (N-N similarity). 
Displays with homogeneous background (high N-N similarity) and a target which is 
significantly different from the distractors (low T-N similarity) will exhibit parallel, 
low RT slopes, and vice versa. This claim was illustrated by them using a qualitative 
"search surface" description as shown in figure 4a. Based on results from our vari­
ance analysis, we can now examine this claim quantitatively: We have constructed 
a "search surface", using actual numerical data of RT slopes from Wolfe's exper­
iments, replacing the N-N similarity axis by its mathematical manifestation, the 
within-groups standard deviation, and N-T similarity by between-groups standard 
deviation 1. The resulting surface (Figure 4b) is qualitatively similar to Duncan and 
Humphreys's. This interesting result testifies that the PCA representation succeeds 
in producing a viable realization of such intuitive terms as inputs similarity, and is 
compatible with the way we perceive the world in visual search tasks. 
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Figun J. The seatcllaurface. 

(b) 
SEARCH SURFACE 

Figure 4: RT rates versus: (a) Input similarities (the search surface, reprinted from 
Duncan and Humphreys, 1989). (b) Standard deviations (within and between) of 
the PCA variance analysis. The asterisks denote Wolfe's experimental data. 

4 Summary 

In this work we present a two-component neural network model of pre-attentional 
visual processing. The model has been applied to the visual search paradigm per­
formed by Wolfe et. al. Our main finding is that when global-feature compression 
is applied to visual displays, there is an inherent difference between the representa­
tions of serial and parallel-task displays: The neural network studied in this paper 
has succeeded in detecting a target among distractors only for displays that were 
experimentally found to be processed in parallel. Based on the outcome of the 

1 In general, each principal axis contains information from different features, which may 
mask the information concerning the existence of a target. Hence, the first principal axis 
may not be the best choice for a discrimination task. In our simulations, the 5th axis 
for example, was primarily dedicated to target information, and was hence used for the 
variance analysis (obviously, the neural network uses information from all the first eight 
principal axes). 
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variance analysis performed on the PCA representations of the visual displays, we 
present a quantitative criterion enabling one to distinguish between serial and par­
allel displays. Furthermore, the resulting 'search-surface' generated by the PCA 
components is in close correspondence with the metaphorical description of Duncan 
and Humphreys. 

The network demonstrates an interesting generalization ability: Naturally, it can 
learn to detect a target in parallel displays from examples of such displays. However, 
it can also learn to perform this task from examples of serial displays only! On the 
other hand, we find that it is impossible to learn serial tasks, irrespective of the 
combination of parallel and serial displays that are presented to the network during 
the training phase. This generalization ability is manifested not only during the 
learning phase, but also during the performance phase; displays belonging to the 
same task have a similar eigenvalue spectrum, irrespective of the actual set-size of 
the displays, and this result holds true for parallel as well as for serial displays. 

The role of PCA in perception was previously investigated by Cottrell [9], designing 
a neural network which performed tasks as face identification and gender discrim­
ination. One might argue that PCA, being a global component analysis is not 
compatible with the existence of local feature detectors (e.g. orientation detectors) 
in the cortex. Our work is in line with recent proposals [10J that there exist two 
pathways for sensory input processing: A fast sub-cortical pathway that contains 
limited information, and a slow cortical pathway which is capable of providing richer 
representations of the stimuli. Given this assumption this paper has presented the 
first neural realization of the processing that may underline the classical metaphor­
ical explanations involved in visual search. 
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Abstract 

Perceptron Decision 'frees (also known as Linear Machine DTs, 
etc.) are analysed in order that data-dependent Structural Risk 
Minimisation can be applied. Data-dependent analysis is per­
formed which indicates that choosing the maximal margin hyper­
planes at the decision nodes will improve the generalization. The 
analysis uses a novel technique to bound the generalization error in 
terms of the margins at individual nodes. Experiments performed 
on real data sets confirm the validity of the approach. 

1 Introduction 

Neural network researchers have traditionally tackled classification problems byas­
sembling perceptron or sigmoid nodes into feedforward neural networks. In this 
paper we consider a less common approach where the perceptrons are used as deci­
sion nodes in a decision tree structure. The approach has the advantage that more 
efficient heuristic algorithms exist for these structures, while the advantages of in­
herent parallelism are if anything greater as all the perceptrons can be evaluated in 
parallel, with the path through the tree determined in a very fast post-processing 
phase. 
Classical Decision 'frees (DTs), like the ones produced by popular packages as 
CART [5] or C4.5 [9], partition the input space by means ofaxis-parallel hyperplanes 
(one at each internal node), hence inducing categories which are represented by 
(axis-parallel) hyperrectangles in such a space. 
A natural extension of that hypothesis space is obtained by associating to each 
internal node hyperplanes in general position, hence partitioning the input space 
by means of polygonal (polyhedral) categories. 
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This approach has been pursued by many researchers, often with different motiva­
tions, and hE.nce the resulting hypothesis space has been given a number of different 
names: multivariate DTs [6], oblique DTs [8], or DTs using linear combinations of 
the attributes [5], Linear Machine DTs, Neural Decision Trees [12], Perceptron Trees 
[13], etc. 
We will call them Perceptron Decision Trees (PDTs), as they can be regarded as 
binary trees having a simple perceptron associated to each decision node. 
Different algorithms for Top-Down induction of PDTs from data have been pro­
posed, based on different principles, [10], [5], [8], 
Experimental study of learning by means of PDTs indicates that their performances 
are sometimes better than those of traditional decision trees in terms of generaliza­
tion error, and usually much better in terms of tree-size [8], [6], but on some data 
set PDTs can be outperformed by normal DTs. 
We investigate an alternative strategy for improving the generalization of these 
structures, namely placing maximal margin hyperplanes at the decision nodes. By 
use of a novel analysis we are able to demonstrate that improved generalization 
bounds can be obtained for this approach. Experiments confirm that such a method 
delivers more accurate trees in all tested databases. 

2 Generalized Decision Trees 

Definition 2.1 Generalized Deci.ion Tree. (GDT). 

Given a space X and a set of boolean functions 
~ = {/ : X -+ {O, I}}, the class GDT(~) of Generalized Decision Trees over ~ are 
functions which can be implemented using a binary tree where each internal node 
is labeled with an element of ~, and each leaf is labeled with either 1 or O. 
To evaluate a particular tree T on input z EX, All the boolean functions associated 
to the nodes are assigned the same argument z EX, which is the argument of T( z). 
The values assumed by them determine a unique path from the root to a leaf: at 
each internal node the left (respectively right) edge to a child is taken if the output 
of the function associated to that internal node is 0 (respectively 1). The value of 
the function at the assignment of a z E X is the value associated to the leaf reached. 
We say that input z reaches a node of the tree, if that node is on the evaluation 
path for z. 

In the following, the nodu are the internal nodes of the binary tree, and the leave. 
are its external ones. 
Examples. 

• Given X = {O, I}", a Boolean Deci6ion Tree (BDT) is a GDT over 

~BDT = U : "(x) = Xi, "Ix E X} 
• Given X = lR", a C-I.5-like Deci.ion Tree (CDT) is a GDT over 

~CDT = U" : ",,(x) = 1 ¢:> z, > 8} 
This kind of decision trees defined on a continuous space are the output of 
common algorithms like C4.5 and CART, and we will call them - for short 
- CDTs. 

• Given X = lR", a Perceptron Deci.ion Tree (PDT) is a GDT over 

~PDT = {wT x : W E lR"+1}, 
where we have assumed that the inputs have been augmented with a coor­
dinate of constant value, hence implementing a thresholded perceptron. 
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3 Data-dependent SRM 

We begin with the definition of the fat-shattering dimension, which was first intro­
duced in [7], and has been used for several problems in learning since [1, 4, 2, 3]. 

Definition 3.1 Let F be a ,et of real valued functiom. We ,ay that a ,et of point. 
X u1-shattered by F relative to r = (r.).ex if there are real number, r. indezed 
by z E X ,uch that for all binary vector' b indezed by X, there u a function I" E F 
,atufying 

~ (z) { ~ r. + 1 if b. = .1 I" ~ r. -1 otheMDue. 

The fat shattering dimension fat:F of the ,et F i, a function from the po,itive real 
number, to the integer' which map' a value 1 to the ,ize of the largut 1-,hattered 
,et, if thi' i, finite, or infinity otherwi6e. 

As an example which will be relevant to the subsequent analysis consider the class: 

J=nn = {z -+ (w, z) + 8: IIwl! = 1}. 

We quote the following result from [11]. 

Corollary 3.2 [11} Let J=nn be reltricted to point' in a ball of n dimemiom of 
radiu, R about the origin and with thre,hold8 181 ~ R. Then 

fat~ (1) ~ min{9R2 /12, n + I} + 1. 

The following theorem bounds the generalisation of a classifier in terms of the 
fat shattering dimension rather than the usual Vapnik-Chervonenkis or Pseudo 
dimension. 
Let T9 denote the threshold function at 8: T9: 1R -+ {O,I}, T9(a) = 1 iff a> 8. For 
a class offunctions F, T9(F) = {T9(/): IE F}. 

Theorem 3.3 [11} Comider a real valued function dOl, F having fat ,hattering 
function bounded above by the function &lat : 1R -+ N which i, continuOtU from 
the right. Fi:D 8 E 1R. If a learner correctly cIOl,ifie, m independently generated 
ezample, • with h = T9(/) E T9(F) ,uch that er.(h) = 0 and 1 = min I/(z,) - 81, 
then with confidence 1 - i the ezpected error of h u bounded from above by 

e(m,k,6) = ! (kiog (8~m) log(32m) + log (8;a)) , 
where k = &lath/8). 

The importance of this theorem is that it can be used to explain how a classifier 
can give better generalisation than would be predicted by a classical analysis of its 
VC dimension. Essentially expanding the margin performs an automatic capacity 
control for function classes with small fat shattering dimensions. The theorem shows 
that when a large margin is achieved it is as if we were working in a lower VC class. 
We should stress that in general the bounds obtained should be better for cases 
where a large margin is observed, but that a priori there is no guarantee that such 
a margin will occur. Therefore a priori only the classical VC bound can be used. In 
view of corresponding lower bounds on the generalisation error in terms of the VC 
dimension, the a posteriori bounds depend on a favourable probability distribution 
making the actual learning task easier. Hence, the result will only be useful if 
the distribution is favourable or at least not adversarial. In this sense the result 
is a distribution dependent result, despite not being distribution dependent in the 
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traditional sense that assumptions about the distribution have had to be made in 
its derivation. The benign behaviour of the distribution is automatically estimated 
in the learning process. 
In order to perform a similar analysis for perceptron decision trees we will consider 
the set of margins obtained at each of the nodes, bounding the generalization as a 
function of these values. 

4 Generalisation analysis of the Tree Class 

It turns out that bounding the fat shattering dimension of PDT's viewed as real 
function classifiers is difficult. We will therefore do a direct generalization analysis 
mimicking the proof of Theorem 3.3 but taking into account the margins at each of 
the decision nodes in the tree. 

Definition 4.1 Let (X, d) be a {p,eudo-} metric 'pace, let A be a ,ub,et of X and 
E > O. A ,et B ~ X i, an E-cover for A if, for every a E A, there eNtI b E B ,uch 
that d(a,b) < E. The E-covering number of A, A'd(E,A), is the minimal cardinality 
of an E-cover for A (if there is no ,uch finite cover then it i, defined to be (0). 

We write A'(E,:F, x) for the E-covering number of:F with respect to the lao pseudo­
metric measuring the maximum discrepancy on the sample x. These numbers are 
bounded in the following Lemma. 

Lemma 4.2 (.Alon et al. [1]) Let:F be a cla.s, of junction, X -+ [0,1] and P a 
distribution over X. Choo,e 0 < E < 1 and let d = fat:F(E/4). Then 

(4m)dlos(2em/(cU» 
E (A'(E,:F, x» ~ 2 \ -;;- , 

where the ezpectation E i, taken w.r.t. a ,ample x E xm drawn according to pm. 

Corollary 4.3 [11} Let :F be a cla" of junctiom X -+ [a, b] and P a distribution 
over X. Choo,e 0 < E < 1 and let d = fat:F(E/4). Then 

(
4m(b _ a)2)dlos(2em("-Cl)/(cU» 

E (A'(E,:F, x» ~ 2 E2 ' 

where the ezpectation E is over ,amples x E xm drawn according to pm. 

We are now in a position to tackle the main lemma which bounds the probability 
over a double sample that the first half has lero error and the second error greater 
than an appropriate E. Here, error is interpreted as being differently classified at 
the output of tree. In order to simplify the notation in the following lemma we 
assume that the decision tree has K nodes. We also denote fat:Flin (-y) by fat(-y) to 
simplify the notation. 

Lemma 4.4 Let T be a perceptron decision tree with K decuion node, with margim 
'11 , '12 , ••• ,'1K at the decision nodes. If it ha.s correctly cla.s,ified m labelled ezamples 
generated independently according to the unknown (but jized) distribution P, then 
we can bound the following probability to be Ie" than ~, 

p2m { xy: 3 a tree T : T correctly cla.s,ifie, x, 

fraction of y mi,cla"ified > E( m, K,~) } < ~, 

where E(m,K,~) = !(Dlog(4m) + log ~). 
where D = E~1 kslog(4em/k.) and k, = fat(-y./8). 
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Proof: Using the standard permutation argument, we may fix a sequence xy and 
bound the probability under the uniform distribution on swapping permutations 
that the sequence satisfies the condition stated. We consider generating minimal 
'YI&/2-covers B!y for each value of Ie, where "11& = min{'Y' : fath' /8) :5 Ie}. Suppose 
that for node i oCthe tree the margin 'Yi of the hyperplane 'Wi satisfies fathi /8) = ~. 
We can therefore find Ii E B!~ whose output values are within 'Yi /2 of 'Wi. We now 
consider the tree T' obtained by replacing the node perceptrons 'Wi of T with the 
corresponding Ii. This tree performs the same classification function on the first 
half of the sample, and the margin remains larger than 'Yi - "1".12 > "11&.12. If a 
point in the second half of the sample is incorrectly classified by T it will either 
still be incorrectly classified by the adapted tree T' or will at one of the decision 
nodes i in T' be closer to the decision boundary than 'YI&i /2. The point is thus 
distinguishable from left hand side points which are both correctly classified and 
have margin greater than "11&.12 at node i. Hence, that point must be kept on the 
right hand side in order for the condition to be satisfied. Hence, the fraction of 
permutations that can be allowed for one choice of the functions from the covers 
is 2-"". We must take the union bound over all choices of the functions from the 
covers. U sing the techniques of [11] the numbers of these choices is bounded by 
Corollory 4.3 as follows 

n~12(8m)I&.los(4emll&.) = 2K (8m)D, 

where D = ~~1 ~ log(4em/lei). The value of E in the lemma statement therefore 
ensures that this the union bound is less than 6. 
o 
Using the standard lemma due to Vapnik [14, page 168] to bound the error proba­
bilities in terms of the discrepancy on a double sample, combined with Lemma 4.4 
gives the following result. 

Theorem 4.5 Suppo,e we are able to cleu,i/y an m ,ample of labelled ezamplea 
wing a perceptron decilion tree with K node, and obtaining margina 'Yi at node i, 
then we can bound the generali,ation error with probability greater than 1 - 6 to be 
Ie" than 

1 (8m)K(2K) 
-(Dlog(4m) + log K ) 
m (K + 1)6 

where D = E~l ~log(4em//cj) and lei = fathi/8). 

Proof: We must bound the probabilities over different architectures of trees and 
different margins. We simply have to choose the values of E to ensure that the 
individual 6's are sufficiently small that the total over all possible choices is less 
than 6. The details are omitted in this abstract. 
o 

5 Experiments 

The theoretical results obtained in the previous section imply that an algorithm 
which produces large margin splits should have a better generalization, since in­
creasing the margins in the internal nodes, has the effect of decreasing the bound 
on the test error. 
In order to test this strategy, we have performed the following experiment, divided 
in two parts: first run a standard perceptron decision tree algorithm and then for 
each decision node generate a maximal margin hyperplane implementing the same 
dichotomy in place of the decision boundary generated by the algorithm. 
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Input: Random m sample x with corresponding classification b. 

Algorithm: Find a perceptron decision tree T which correctly classifies the sample 
using a standard algorithm; 
Let Ie = number of decision nodes of Tj 
From tree T create T' by executing the following loop: 

For each decision node i replace the weight vector w, by the vector wi 
which realises the maximal margin hyperplane agreeing with w, on the 
set of inputs reaching node i; 

Let the margin of w~ on the inputs reaching node i be 'Y,j 

Output: Classifier T', with bound on the generalisation error in terms of the num-
ber of decision nodes K and D = 2:~11e, log(4em/~) where Ie, = fath,/8). 

Note that the classification of T and T' agree on the sample and hence, that T' is 
consistent with the sample. 
As a PDT learning algorithm we have used OC1 [8], created by Murthy, Kasif and 
Salzberg and freely available over the internet. It is a randomized algorithm, which 
performs simulated annealing for learning the perceptrons. The details about the 
randomization, the pruning, and the splitting criteria can be found in [8]. 
The data we have used for the test are 4 of the 5 sets used in the original OC1 
paper, which are publicly available in the UCI data repository [16]. 
The results we have obtained on these data are compatible with the ones reported 
in the original OC1 paper, the differences being due to different divisions between 
training and testing sets and their sizesj the absence in our experiments of cross­
v&l.idation and other techniques to estimate the predictive accuracy of the PDT; 
and the inherently randomized nature of the algorithm. 
The second stage of the experiment involved finding - for each node - the hyperplane 
which performes the lame split as performed by the OC1 tree but with the ma.ximal 
margin. This can be done by considering the subsample reaching each node as 
perfectly divided in two parts, and feeding the data accordingly relabelled to an 
algorithm which finds the optimal split in the linearly separable case. The ma.ximal 
margin hyperplanes are then placed in the decision nodes and the new tree is tested 
on the same testing set. 
The data sets we have used are: Wi,eoun,in Brealt Caneer, Pima Indiana Diabetel, 
BOlton Houling transformed into a classification problem by thresholding the price 
at • 21.000 and the classical Inl studied by Fisher (More informations about the 
databases and their authors are in [8]). All the details about sample sizes, number 
of attributes and results (training and testing accuracy, tree size) are summarised 
in table 1. 
We were not particularly interested in achieving a high testing accuracy, but rather 
in observing if improved performances can be obtained by increasing the margin. 
For this reason we did not try to optimize the performance of the original classifier 
by using cross-v&l.idation, or a convenient training/testing set ratio. The relevant 
quantity, in this experiment, is the different in the testing error between a PDT 
with arbitrary margins and the same tree with optimized margins. This quantity 
has turned out to be always positive, and to range from 1.7 to 2.8 percent of gain, 
on test errors which were already very low. 

train OC1 test FAT test #trs #ts attrib. classes nodes 
CANC 96.53 93.52 95.37 249 108 9 2 1 
IRIS 96.67 96.67 98.33 90 60 4 3 2 
DIAB 89.00 70.48 72.45 209 559 8 2 4 
HOUS 95.90 81.43 84.29 306 140 13 2 7 
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