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ABSTRACT 

We describe the notion of "equivalent kernels" and suggest that this 
provides a framework for comparing different classes of regression models, 
including neural networks and both parametric and non-parametric 
statistical techniques. Unfortunately, standard techniques break down when 
faced with models, such as neural networks, in which there is more than one 
"layer" of adjustable parameters. We propose an algorithm which overcomes 
this limitation, estimating the equivalent kernels for neural network models 
using a data perturbation approach. Experimental results indicate that the 
networks do not use the maximum possible number of degrees of freedom, 
that these can be controlled using regularisation techniques and that the 
equivalent kernels learnt by the network vary both in "size" and in "shape" 
in different regions of the input space. 

1 INTRODUCTION 

The dominant approaches within the statistical community, such as multiple linear 
regression but even extending to advanced techniques such as generalised additive 
models (Hastie and Tibshirani, 1990), projection pursuit regression (Friedman and 
Stuetzle, 1981), and classification and regreSSion trees (Breiman et al., 1984), tend to 
err, when they do, on the high-bias side due to restrictive assumptions regarding either 
the functional form of the response to individual variables and/or the limited nature of 
the interaction effects which can be accommodated. Other classes of models, such as 
multi-variate adaptive regression spline models of high-order (Friedman, 1991), 
interaction splines (Wahba, 1990) and especially non-parametric regression techniques 
(HardIe, 1990) are capable of relaxing some or all of these restrictive assumptions, but 
run the converse risk of suffering high-variance, or "over fitting". 

A large literature of experimental results suggests that, under the right conditions, the 
flexibility of neural networks allows them to out-perform other techniques. Where the 
current understanding is limited, however, is in analysing trained neural networks to 
understand how the degrees of freedom have been allocated, in a way which allows 
meaningful comparisons with other classes of models. We propose that the notion of 
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"equivalent kernels" [ego (Hastie and Tibshirani, 1990)] can provide a unifying 
framework for neural networks and other classes of regression model, as well as 
providing important information about the neural network itself. We describe an 
algorithm for estimating equivalent kernels for neural networks which overcomes the 
limitations of existing analytical methods. 

In the following section we describe the concept of equivalent kernels. In Section 3 we 
describe an algorithm which estimates how the response function learned by the neural 
network would change if the training data were modified slightly, from which we derive 
the equivalent kernels for the network. Section 4 provides simulation results for two 
controlled experiments. Section 5 contains a brief discussion of some of the implications 
of this work, and highlights a number of interesting directions for further research. A 
summary of the main points of the paper is presented in Section 6. 

2 EQUIVALENT KERNELS 

Non-parametric regression techniques, such as kernel smoothing, local regression and 
nearest neighbour regression, can all be expressed in the form: 

<Xl 

y(z) = f ((J(z,x).J(x) .t(x) dx (1) 
X=·<Xl 

where y(z) is the response at the query point z, <p(z. x) is the weighting, or kernel, which 
is "centred" at z, f(x) is the input density and t(x) is the target function. 

In finite samples, this is approximated by: 
n 

y(xJ = L<f>(x;,xj).tj (2) 
j=1 

and the response at point Xj is a weighted average of the sampled target values across the 
entire dataset. Furthermore, the response can be viewed as a least squares estimate for 
y(Xj) because we can write it as a solution to the minimization problem: 

~ (r.CjJ(xj,Xj).tj - y(xi)Y (3) 
];1 ) 

We can combine the kernel functions to define the smoother matrix S, given by: 

<P(Xl,Xl) <P(Xl,X2) 

s= <P(X2 ,Xl) <P(X2 ,X2) 
(4) 

From which we obtain: 

y=S.t (5) 
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Where y = (y(XI), y(X2), ... ,y(xn) )T, and t = (t\, h, ... , tJT is the vector of target values. 

From the smoother matrix S, we can derive many kinds of important infonnation. The 
model is represented in tenns of the influence of each observation on the response at 
each sample point, allowing us to quantify the effect of outliers for instance. It is also 
possible to calculate the model bias and variance at each sample point [see (Hardie, 
1990) for details]. One important measure which we will return to below is the number 
of degrees of freedom which are absorbed by the model; a number of definitions can be 
motivated, but in the case of least squares estimators they turn out to be equivalent [see 
pp 52-55 of (Hastie and Tibshirani, 1990)], perhaps the most intuitive is: 

dofs = trace( S ) (6) 

thus a model which is a look up table, i.e. y(Xj) = tj, absorbs all 'n' degrees of freedom, 
whereas the sample mean, y(Xj) = lin L tj , absorbs only one degree of freedom. The 
degrees of freedom can be taken as a natural measure of model complexity, which 
fonnulated with respect to the data itself, rather than to the number of parameters. 

The discussion above relates only to models which can be expressed in the fonn given by 
equation (2), i.e. where the "kernel functions" can be computed. Fortunately, many types 
of parametric models can be "inverted" in this manner, providing what are known as 
"equivalent kernels" . Consider a model of the fonn: 

(7) 

i.e. a weighted function of some arbitrary transfonnations of the input variables. In the 
case of fitting using a least squares approach, then the optimal weights w = ( WI, W2, .. . , 
Wn)T are given by: 

(8) 

where <1>+ is the pseudo-inverse of the transfonned data matrix <1>. The network output 
can then be expressed as: 

(9) 

= ~k <P(Xj, Xk) .~ 

and the cp(Xj, Xk) are then the "equivalent kernels" of the original model which is now in 
the same fonn as equation (2). Examples of equivalent kernels for different classes of 
parametric and non-parametric models are given by (Hastie and Tibshirani, 1990) whilst 
a treatment for Radial Basis Function (RBF) networks is presented in (Lowe, 1995). 

3 EQUIVALENT KERNELS FOR NEURAL NETWORKS 

The analytic approach described above relies on the ability to calculate the optimal 
weights using the pseudo-inverse of the data matrix. This is only possible if the 
transfonnations, ~(x), are fixed functions, as is typically the case in parametric models or 
single-layer neural networks. However, for a neural network with more than one layer of 
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adjustable weights, the basis functions are parametrised rather than fixed and are thus 
themselves a function of the training data. Consequently the equivalent kernels are also 
dependent on the data, and the problem of finding the equivalent kernels becomes non
linear. 

We adopt a solution to this problem which is based on the following observation. In the 
case where the equivalent kernels are independent of the observed values tj, we notice 
from equation (2): 

By; ) 
- = <p(x;,Xj (10) 
Btj 

i.e. the basis function <p(Xj, x) is equal to the sensitivity of the response y(Xj) to a small 
change in the observed value tj. This suggests that we approximate the equivalent kernels 
by turning the above expression around: 

(11) 

where E is a small perturbation of the training data and <p(Xj) is the response of the re
optimised network: 

If/(X j ) = <p·(x;,x).(tj +e)+ L<p·(x;,Xk)·tk (12) 
k~j 

The notation <p. indicates that the new kernel functions derive from the network fitted to 
perturbed data. Note that this takes into account all of the adjustable parameters in the 
network. Whereas treating the basis functions as fixed would give simply the number of 
additive terms in the final layer of the network. 

Calculating the equivalent kernels in this fashion is a computationally intensive 
procedure, with the network needing to be retrained after perturbing each point in tum. 
Note that regularisation techniques such as weight decay should be incorporated within 
this procedure as with initial training and are thus correctly accounted for by the 
algorithm. The retraining step is facilitated by using the optimised weights from the 
unperturbed data, causing the network to re-train from weights which are initially almost 
optimal (especially if the perturbation is small). 

4 SIMULATION RESULTS 

In order to investigate the practical viability of estimating equivalent kernels using the 
perturbation approach, we performed a controlled experiment on simulated data. The 
target function used was the first two periods of a sine-wave, sampled at 41 points evenly 
spaced between 0 and 47t. This function was estimated using a neural network with a 
single layer of four sigmoid units, a shortcut connection from input to output, and a 
linear output unit, trained using standard backpropogation. 

From the trained network we then estimated the equivalent kernels using the 
perturbation method described in the previous section. The resulting kernels for points 0, 
7t, and 27t are shown in figure 2, below. 
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Figure 2: Equivalent Kernels for sine-wave problem 

As discussed in the previous section, we can combine the estimated kernels to construct a 
linear smoother. The correlation coefficient between the function reconstructed from the 
approximated smoother matrix and the original neural network is found to be 0.995 . 

From equation (6) we find that the network contains approx. 8.2 degrees of freedom; this 
compares to the 10 potential degrees of freedom, and also to the 6 degrees of freedom 
which we would expect for an equivalent model with fixed transfer functions. Clearly, to 
some degreee, perturbations in the training data are accommodated by adjustments to the 
sigmoid functions. 

Using this approach we can also investigate the effects of weight decay on (a) the ability 
of the network to reproduce the target function, (b) the number of degrees of freedom 
absorbed by the network, and (c) the kernel functions themselves. We use a standard 
quadratic weight decay, leading to a cost function of the form: 

C = (y - f(x)i + y.LW2 (13) 

The effect of gradually increaSing the weight decay factor, y, on both network 
performance and capacity is shown in figure 3(b), below: 
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Figure 3: (a) Comparison of network and reconstructed functions with target, and (b) effect of weight decay 

Looking at figure 3(b) we note that the two curves follow each other very closely. As the 
weight decay factor is increased, the effective capacity of the network is reduced and the 
performance drops off accordingly. 

In one dimension, the main flexibility for the equivalent kernels is one of scale: narrow, 
concentrated kernels which rely heavily on nearby observations versus broad, diffuse 
kernels in which the response is conditioned on a larger number of observations. In 
higher dimensions, however, the real power of neural networks as function estimators 
lies in the fact that the sensitivity of the estimated network function is itself a flexible 
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function of the input vector. Viewed from the perspective of equivalent kernels, this 
property might be expected to manifest itself in a change in the shape of the kernels in 
different regions of the input space. In order to investigate this effect we applied the 
perturbation approach in estimating equivalent kernels for a network trained to 
reproduce a two-dimensional function; the function chosen was a "ring" defined by: 

z = II ( 1 + 30.( x2 + y2 - 0.5)2) (14) 

For ease of visualisation the input points were chosen on a regular 15 by 15 grid running 
between plus and minus one. This function was approximated using a 2(+ 1 )-8-1 network 
with sigmoidal hidden units and a linear output unit. Selected kernel functions, 
estimated from this network, are shown in figure 4, below: 

Figure 4: Equivalent Kernels: approximated using the perturbation method 

This result clearly shows the changing shape of the kernel functions in different parts of 
the input space. The function reconstructed from the estimated smoother matrix has a 
correlation coefficient of 0.987 with the original network function. 

5. Discussion 

The ability to transform neural network regression models into an equivalent kernel 
representation raises the possibility of harnessing the whole battery of statistical 
methods which have been developed for non-parametric techniques: model selection 
procedures, prediction interval estimation, calculation of degrees of freedom, and 
statistical significance testing amongst others. The algorithm described in this paper 
raises the possibility of applying these techniques to more-powerful networks with two or 
more layers of adaptable weights, be they based on sigmoids, radial functions, splines or 
whatever, albeit at the price of significant computational effort. 

Another opportunity is in the area of model combination where the added value from 
combining models in an ensemble is related to the degree of correlation between the 
different models (Krogh and Vedelsby, 1995). Typically the pointwise correlation 
between two models will be related to the similarity between their equivalent kernels and 
so the equivalent kernel approach opens new possibilities for conditionally modifying the 
ensemble weights without a need for an additional level of learning. 

The influence-based method for estimating the number of degrees of freedom absorbed 
by a neural network model, focuses attention on uncertainty in the data itself, rather than 
taking the indirect route based on uncertainty in the model parameters; in future work 
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we propose to investigate the similarities and differences between our approach and 
those based on the "effective number of parameters" (Moody, 1992) and Bayesian 
methods (MacKay, 1992). 

6. Summary 

We suggest that equivalent kernels provide an important tool for understanding what 

neural networks do and how they go about doing it; in particular a large battery of 
existing statistical tools use information derived from the smoother matrix. 

The perturbation method which we have presented overcomes the limitations of standard 
approaches, which are only appropriate for models with a single layer of adjustable 
weights, albeit at considerable computational expense. It has the added bonus of 
automatically taking into account the effect of regularisation techniques such as weight 
decay. 

The experimental results illustrate the application of the technique to two simple 
problems. As expected the number of degrees of freedom in the models is found to be 
related to the amount of weight decay used during training. The equivalent kernels are 
found to vary significantly in different regions of input space and the functions 
reconstructed from the estimated smoother matrices closely match the origna! networks. 
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