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We introduce a new algorithm designed to learn sparse percep
trons over input representations which include high-order features. 
Our algorithm, which is based on a hypothesis-boosting method, 
is able to PAC-learn a relatively natural class of target concepts. 
Moreover, the algorithm appears to work well in practice: on a set 
of three problem domains, the algorithm produces classifiers that 
utilize small numbers of features yet exhibit good generalization 
performance. Perhaps most importantly, our algorithm generates 
concept descriptions that are easy for humans to understand. 

1 Introd uction 

Multi-layer perceptron (MLP) learning is a powerful method for tasks such as con
cept classification. However, in many applications, such as those that may involve 
scientific discovery, it is crucial to be able to explain predictions. Multi-layer percep
trons are limited in this regard, since their representations are notoriously difficult 
for humans to understand. We present an approach to learning understandable, 
yet accurate, classifiers. Specifically, our algorithm constructs sparse perceptrons, 
i.e., single-layer perceptrons that have relatively few non-zero weights. Our algo
rithm for learning sparse perceptrons is based on a new hypothesis boosting algo
rithm (Freund & Schapire, 1995). Although our algorithm was initially developed 
from a learning-theoretic point of view and retains certain theoretical guarantees (it 
PAC-learns the class of sparse perceptrons), it also works well in practice. Our ex
periments in a number of real-world domains indicate that our algorithm produces 
perceptrons that are relatively comprehensible, and that exhibit generalization per
formance comparable to that of backprop-trained MLP's (Rumelhart et al., 1986) 
and better than decision trees learned using C4.5 (Quinlan, 1993). 
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We contend that sparse perceptrons, unlike MLP's, are comprehensible because they 
have relatively few parameters, and each parameter describes a simple (Le. linear) 
relationship. As evidence that sparse perceptrons are comprehensible, consider that 
such linear functions are commonly used to express domain knowledge in fields such 
as medicine (Spackman, 1988) and molecular biology (Stormo, 1987). 

2 Sparse Perceptrons 

A perceptron is a weighted threshold over the set of input features and over higher
order features consisting of functions operating on only a limited number of the 
input features. Informally, a sparse perceptron is any perceptron that has relatively 
few non-zero weights. For our later theoretical results we will need a more precise 
definition of sparseness which we develop now. Consider a Boolean function I : 
{O, 1 } n -t { -1, + 1 }. Let Ck be the set of all conjunctions of at most k of the inputs 
to I. Ck includes the "conjunction" of 0 inputs, which we take as the identically 
1 function. All of the functions in Ck map to {-1,+1}, and every conjunction in 
Ck occurs in both a positive sense (+1 represents true) and a negated sense (-1 
represents true). Then the function I is a k-perceptron if there is some integer s 
such that I(x) = sign(L::=1 hi(x)), where for all i, hi E Ck, and sign(y) is undefined 
if y = 0 and is y/lyl otherwise. Note that while we have not explicitly shown any 
weights in our definition of a k-perceptron I, integer weights are implicitly present 
in that we allow a particular hi E Ck to appear more than once in the sum defining 
I. In fact, it is often convenient to think of a k-perceptron as a simple linear 
discriminant function with integer weights defined over a feature space with O(nk) 
features, one feature for each element of Ck • 

We call a given collection of s conjunctions hi E Ck a k-perceptron representation of 
the corresponding function I, and we call s the size of the representation. We define 
the size of a given k-perceptron function I as the minimal size of any k-perceptron 
representation of I. An s-sparse k-perceptron is a k-perceptron I such that the size 
of I is at most s. We denote by PI: the set of Boolean functions over {O, 1}n which 
can be represented as k-perceptrons, and we define Pk = Un Pi:. The subclass of 
s-sparse k-perceptrons is denoted by Pk,/l" We are also interested in the class P~ 
of k-perceptrons with real-valued weights, at most r of which are non-zero. 

3 The Learning Algorithm 

In this section we develop our learning algorithm and prove certain performance 
guarantees. Our algorithm is based on a recent "hypothesis boosting" algorithm 
that we describe after reviewing some basic learning-theory terminology. 

3.1 PAC Learning and Hypothesis Boosting 

Following Valiant (1984), we say that a function class :F (such as Pk for fixed k) 
is (strongly) PAC-learnable if there is an algorithm A and a polynomial function 
PI such that for any positive f and 8, any I E :F (the target junction), and any 
probability distribution D over the domain of I, with probability at least 1 -
8, algorithm A(EX(f, D), f, 8) produces a function h (the hypothesis) such that 
Pr[PrD[/(x) I- hex)] > f] < 8. The outermost probability is over the random choices 
made by the EX oracle and any random choices made by A. Here EX(f, D) denotes 
an oracle that, when queried, chooses a vector of input values x with probability 
D and returns the pair (x,/(x)) to A. The learning algorithm A must run in time 
PI (n, s, c 1 , 8-1 ), where n is the length of the input vector to I and s is the size of 
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AdaBoost 
Input: training set S of m examples of function f, weak learning algorithm WL that 
is (~ - 'Y)-approximate, l' 
Algorithm: 

1. T +-- ~ In(m) 
2. for all xES, w(x) +-- l/m 
3. for i = 1 to T do 
4. for all XES, Di(X) +-- w(x)/ L:l=l w(x). 
5. invoke WL on S and distribution Di, producing weak hypothesis hi 
6. €i +-- L:z.h;(z);oI:/(z) Di(X) 
7. (3i +-- €i/ (1 - €i) 
8. for all XES, if h(x) = f(x) then w(x) +-- w(x) . (3i 
9. enddo 

Output: h(x) == sign (L::=l -In((3i) . hi{x)) 

Figure 1: The AdaBoost algorithm. 

f; the algorithm is charged one unit of time for each call to EX. We sometimes 
call the function h output by A an €-approximator (or strong approximator) to f 
with respect to D. If F is PAC-learnable by an algorithm A that outputs only 
hypotheses in class 1£ then we say that F is PAC-learnable by 1£. If F is PAC
learnable for € = 1/2 - 1/'P2(n, s), where'P2 is a polynomial function, then :F is 
weakly PA C-learnable, and the output hypothesis h in this case is called a weak 
approximator. 

Our algorithm for finding sparse perceptrons is, as indicated earlier, based on the 
notion of hypothesis boosting. The specific boosting algorithm we use (Figure 1) 
is a version of the recent AdaBoost algorithm (Freund & Schapire, 1995). In the 
next section we apply AdaBoost to "boost" a weak learning algorithm for Pk,8 into 
a strong learner for Pk,8' AdaBoost is given a set S of m examples of a function 
f : {O,1}n ---+ {-1, +1} and a weak learning algorithm WL which takes € = ! - l' 
for a given l' b must be bounded by an inverse polynomial in nand s). Adaf300st 
runs for T = In(m)/(2'Y2) stages. At each stage it creates a probability distribution 
Di over the training set and invokes WL to find a weak hypothesis hi with respect 
to Di (note that an example oracle EX(j, Di) can be simulated given Di and S). 
At the end of the T stages a final hypothesis h is output; this is just a weighted 
threshold over the weak hypotheses {hi I 1 ~ i ~ T}. If the weak learner succeeds 
in producing a (~-'Y)-approximator at each stage then AdaBoost's final hypothesis 
is guaranteed to be consistent with the training set (Freund & Schapire, 1995). 

3.2 PAC-Learning Sparse k-Perceptrons 

We now show that sparse k-perceptrons are PAC learnable by real-weighted k
perceptrons having relatively few nonzero weights. Specifically, ignoring log factors, 
Pk,8 is learnable by P~O(82) for any constant k. We first show that, given a training 

set for any f E Pk,8' we can efficiently find a consistent h E p~( 8 2 )' This consis
tency algorithm is the basis of the algorithm we later apply to empirical learning 
problems. We then show how to turn the consistency algorithm into a PAC learning 
algorithm. Our proof is implicit in somewhat more general work by Freund (1993), 
although he did not actually present a learning algorithm for this class or analyze 
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the sample size needed to ensure f-approximation, as we do. Following Freund, we 
begin our development with the following lemma (Goldmann et al., 1992): 

Lemma 1 (Goldmann Hastad Razhorov) For I: {0,1}n -+ {-1,+1} and H, 
any set 01 functions with the same domain and range, il I can be represented as 
I(x) = sign(L::=l hi(X», where hi E H, then lor any probability distribution D 
over {O, 1}n there is some hi such that PrD[f(x) ¥- hi(x)] ~ ~ - 218 ' 

If we specialize this lemma by taking H = Ck (recall that Ck is the set of conjunc
tions of at most k input features of f) then this implies that for any I E Pk,8 and 
any probability distribution D over the input features of I there is some hi E Ck 
that weakly approximates I with respect to D. Therefore, given a training set S 
and distribution D that has nonzero weight only on instances in S, the following 
simple algorithm is a weak learning algorithm for Pk: exhaustively test each of the 
O(nk) possible conjunctions of at most k features until we find a conjunction that a - 218 )-approximates I with respect to D (we can efficiently compute the approx
imation of a conjunction hi by summing the values of D over those inputs where hi 
and I agree). Any such conjunction can be returned as the weak hypothesis. The 
above lemma proves that if I is a k-perceptron then this exhaustive search must 
succeed at finding such a hypothesis. Therefore, given a training set of m examples 
of any s-sparse k-perceptron I, AdaBoost run with the above weak learner will, af
ter 2s2In(m) stages, produce a hypothesis consistent with the training set. Because 
each stage adds one weak hypothesis to the output hypothesis, the final hypothesis 
will be a real-weighted k-perceptron with at most 2s2In(m) nonzero weights. 

We can convert this consistency algorithm to a PAC learning algorithm as follows. 
First, given a finite set of functions F, it is straightforward to show the following 
(see, e.g., Haussler, 1988): 

Lemma 2 Let F be a finite set ollunctions over a domain X. For any function 
lover X, any probability distribution D over X, and any positive f and ~, given a 
set S ofm examples drawn consecutively from EX(f, D), where m ~ f-1(ln~-1 + 
In IFI), then Pr[3h E F I "Ix E S f(x) = h(x) & Prv[/(x) ¥- h(x)] > f] < ~, where 
the outer probability is over the random choices made by EX(f,D). 

The consistency algorithm above finds a consistent hypothesis in P~, where r = 
2s2 In(m). Also, based on a result of Bruck (1990), it can be shown that In IP~I = 
o (r2 + kr log n). Therefore, ignoring log factors, a randomly-generated training set 
of size O(kS4 If) is sufficient to guarantee that, with high probability, our algorithm 
will produce an f-approximator for any s-sparse k-perceptron target. In other words, 
the following is a PAC algorithm for Pk,8: compute sufficiently large (but polynomial 
in the PAC parameters) m, draw m examples from EX(f, D) to create a training 
set, and run the consistency algorithm on this training set. 

So far we have shown that sparse k-perceptrons are learnable by sparse perceptron 
hypotheses (with potentially polynomially-many more weights). In practice, of 
course, we expect that many real-world classification tasks cannot be performed 
exactly by sparse perceptrons. In fact, it can be shown that for certain (reasonable) 
definitions of "noisy" sparse perceptrons (loosely, functions that are approximated 
reasonably well by sparse perceptrons), the class of noisy sparse k-perceptrons is 
still PAC-learnable. This claim is based on results of Aslam and Decatur (1993), 
who present a noise-tolerant boosting algorithm. In fact, several different boosting 
algorithms could be used to learn Pk,s (e.g., Freund, 1993). We have chosen to use 
AdaBoost because it seems to offer significant practical advantages, particularly in 
terms of efficiency. Also, our empirical results to date indicate that our algorithm 
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works very well on difficult (presumably "noisy") real-world problems. However, 
one potential advantage of basing the algorithm on one of these earlier boosters 
instead of AdaBoost is that the algorithm would then produce a perceptron with 
integer weights while still maintaining the sparseness guarantee of the AdaBoost
based algorithm. 

3.3 Practical Considerations 

We turn now to the practical details of our algorithm, which is based on the consis
tency algorithm above. First, it should be noted that the theory developed above 
works over discrete input domains (Boolean or nominal-valued features). Thus, in 
this paper, we consider only tasks with discrete input features. Also, because the 
algorithm uses exhaustive search over all conjunctions of size k, learning time de
pends exponentially on the choice of k. In this study we to use k = 2 throughout, 
since this choice results in reasonable learning times. 

Another implementation concern involves deciding when the learning algorithm 
should terminate. The consistency algorithm uses the size of the target function 
in calculating the number of boosting stages. Of course, such size information is 
not available in real-world applications, and in fact, the target function may not be 
exactly representable as a sparse perceptron. In practice, we use cross validation 
to determine an appropriate termination point. To facilitate comprehensibility, we 
also limit the number of boosting stages to at most the number of weights that 
would occur in an ordinary perceptron for the task. For similar reasons, we also 
modify the criteria used to select the weak hypothesis at each stage so that simple 
features are preferred over conjunctive features. In particular, given distribution 
D at some stage j, for each hi E Ck we compute a correlation Ev[/ . hi]. We 
then mUltiply each high-order feature's correlation by i. The hi with the largest 
resulting correlation serves as the weak hypothesis for stage j. 

4 Empirical Evaluation 

In our experiments, we are interested in assessing both the generalization ability 
and the complexity of the hypotheses produced by our algorithm. We compare our 
algorithm to ordinary perceptrons trained using backpropagation (Rumelhart et al., 
1986), multi-layer perceptrons trained using backpropagation, and decision trees 
induced using the C4.5 system (Quinlan, 1993). We use C4.5 in our experiments as 
a representative of "symbolic" learning algorithms. Symbolic algorithms are widely 
believed to learn hypotheses that are more comprehensible than neural networks. 
Additionally, to test the hypothesis that the performance of our algorithm can be 
explained solely by its use of second-order features, we train ordinary perceptrons 
using feature sets that include all pairwise conjunctions, as well as the ordinary 
features. To test the hypothesis that the performance of our algorithm can be 
explained by its use of relatively few weights, we consider ordinary perceptrons 
which have been pruned using a variant of the Optimal Brain Damage (OBD) 
algorithm (Le Cun et al., 1989). In our version of OBD, we train a perceptron until 
the stopping criteria are met, prune the weight with the smallest salience, and then 
iterate the process. We use a validation set to decide when to stop pruning weights. 
For each training set, we use cross-validation to select the number of hidden units 
(5, 10, 20, 40 or 80) for the MLP's, and the pruning confidence level for the C4.5 
trees. We use a validation set to decide when to stop training for the MLP's. 

We evaluate our algorithm using three real-world domains: the voting data set from 
the UC-Irvine database; a promoter data set which is a more complex superset of 
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a e : es -se accuracy. T bl 1 11 t t 
perceptrons 

domain boosting C4.5 multi-layer ordinary 2nd-order pruned 
voting 91.5% 89.2% * 92.2% 90.8% 89.2% * 87.6% * 
promoter 92.7 84.4 * 90.6 90.0 * 88.7 * 88.2 * coding 72.9 62.6 * 71.6 * 70.7 * 69.8 * 70.3 * 

Table 2: Hypothesis complexity (# weights). 
perceptrons 

domain boosting multi-layer ordinary 2nd-order pruned 
voting 12 651 30 450 12 
promoters 41 2267 228 25764 59 
protein coding 52 4270 60 1740 37 

U C-Irvine one; and a data set in which the task is to recognize protein-coding 
regions in DNA (Craven & Shavlik, 1993). We remove the physician-fee-freeze 
feature from the voting data set to make the problem more difficult. We conduct 
our experiments using a lO-fold cross validation methodology, except for in the 
protein-coding domain. Because of certain domain-specific characteristics of this 
data set, we use 4-fold cross-validation for our experiments with it. 

Table 1 reports test-set accuracy for each method on all three domains. We mea
sure the statistical significance of accuracy differences using a paired, two-tailed 
t-test. The symbol '*' marks results in cases where another algorithm is less ac
curate than our boosting algorithm at the p ::; 0.05 level of significance. No other 
algorithm is significantly better than our boosting method in any of the domains. 
From these results we conclude that (1) our algorithm exhibits good generalization 
performance on number of interesting real-world problems, and (2) the generaliza
tion performance of our algorithm is not explained solely by its use of second-order 
features, nor is it solely explained by the sparseness of the perceptrons it produces. 
An interesting open question is whether perceptrons trained with both pruning and 
second-order features are able to match the accuracy of our algorithm; we plan to 
investigate this question in future work. 

Table 2 reports the average number of weights for all of the perceptrons. For all 
three problems, our algorithm produces perceptrons with fewer weights than the 
MLP's, the ordinary perceptrons, and the perceptrons with second-order features. 
The sizes of the OBD-pruned perceptrons and those produced by our algorithm 
are comparable for all three domains. Recall, however, that for all three tasks, 
the perceptrons learned by our algorithm had significantly better generalization 
performance than their similar-sized OBD-pruned counterparts. We contend that 
the sizes of the perceptrons produced by our algorithm are within the bounds of 
what humans can readily understand. In the biological literature, for example, linear 
discriminant functions are frequently used to communicate domain knowledge about 
sequences of interest. These functions frequently involve more weights than the 
perceptrons produced by our algorithm. We conclude, therefore, that our algorithm 
produces hypotheses that are not only accurate, but also comprehensible. 

We believe that the results on the protein-coding domain are especially interesting. 
The input representation for this problem consists of 15 nominal features represent
ing 15 consecutive bases in a DNA sequence. In the regions of DNA that encode 
proteins (the positive examples in our task), non-overlapping triplets of consecu-
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tive bases represent meaningful "words" called codons. In previous work (Craven 
& Shavlik, 1993), it has been found that a feature set that explicitly represents 
codons results in better generalization than a representation of just bases. How
ever, we used the bases representation in our experiments in order to investigate the 
ability of our algorithm to select the "right" second-order features. Interestingly, 
nearly all of the second-order features included in our sparse perceptrons represent 
conjunctions of bases that are in the same codon. This result suggests that our 
algorithm is especially good at selecting relevant features from large feature sets. 

5 Future Work 

Our present algorithm has a number of limitations which we plan to address. Two 
areas of current research are generalizing the algorithm for application to problems 
with real-valued features and developing methods for automatically suggesting high
order features to be included in our algorithm's feature set. 
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