
Learning Sparse Perceptrons

Jeffrey C. Jackson
Mathematics & Computer Science Dept.

Duquesne University
600 Forbes Ave

Pittsburgh, PA 15282
jackson@mathcs.duq.edu

Abstract

Mark W. Craven
Computer Sciences Dept.

University of Wisconsin-Madison
1210 West Dayton St.

Madison, WI 53706
craven@cs.wisc.edu

We introduce a new algorithm designed to learn sparse percep
trons over input representations which include high-order features.
Our algorithm, which is based on a hypothesis-boosting method,
is able to PAC-learn a relatively natural class of target concepts.
Moreover, the algorithm appears to work well in practice: on a set
of three problem domains, the algorithm produces classifiers that
utilize small numbers of features yet exhibit good generalization
performance. Perhaps most importantly, our algorithm generates
concept descriptions that are easy for humans to understand.

1 Introd uction

Multi-layer perceptron (MLP) learning is a powerful method for tasks such as con
cept classification. However, in many applications, such as those that may involve
scientific discovery, it is crucial to be able to explain predictions. Multi-layer percep
trons are limited in this regard, since their representations are notoriously difficult
for humans to understand. We present an approach to learning understandable,
yet accurate, classifiers. Specifically, our algorithm constructs sparse perceptrons,
i.e., single-layer perceptrons that have relatively few non-zero weights. Our algo
rithm for learning sparse perceptrons is based on a new hypothesis boosting algo
rithm (Freund & Schapire, 1995). Although our algorithm was initially developed
from a learning-theoretic point of view and retains certain theoretical guarantees (it
PAC-learns the class of sparse perceptrons), it also works well in practice. Our ex
periments in a number of real-world domains indicate that our algorithm produces
perceptrons that are relatively comprehensible, and that exhibit generalization per
formance comparable to that of backprop-trained MLP's (Rumelhart et al., 1986)
and better than decision trees learned using C4.5 (Quinlan, 1993).

Learning Sparse Perceptrons 655

We contend that sparse perceptrons, unlike MLP's, are comprehensible because they
have relatively few parameters, and each parameter describes a simple (Le. linear)
relationship. As evidence that sparse perceptrons are comprehensible, consider that
such linear functions are commonly used to express domain knowledge in fields such
as medicine (Spackman, 1988) and molecular biology (Stormo, 1987).

2 Sparse Perceptrons

A perceptron is a weighted threshold over the set of input features and over higher
order features consisting of functions operating on only a limited number of the
input features. Informally, a sparse perceptron is any perceptron that has relatively
few non-zero weights. For our later theoretical results we will need a more precise
definition of sparseness which we develop now. Consider a Boolean function I :
{O, 1 } n -t { -1, + 1 }. Let Ck be the set of all conjunctions of at most k of the inputs
to I. Ck includes the "conjunction" of 0 inputs, which we take as the identically
1 function. All of the functions in Ck map to {-1,+1}, and every conjunction in
Ck occurs in both a positive sense (+1 represents true) and a negated sense (-1
represents true). Then the function I is a k-perceptron if there is some integer s
such that I(x) = sign(L::=1 hi(x)), where for all i, hi E Ck, and sign(y) is undefined
if y = 0 and is y/lyl otherwise. Note that while we have not explicitly shown any
weights in our definition of a k-perceptron I, integer weights are implicitly present
in that we allow a particular hi E Ck to appear more than once in the sum defining
I. In fact, it is often convenient to think of a k-perceptron as a simple linear
discriminant function with integer weights defined over a feature space with O(nk)
features, one feature for each element of Ck •

We call a given collection of s conjunctions hi E Ck a k-perceptron representation of
the corresponding function I, and we call s the size of the representation. We define
the size of a given k-perceptron function I as the minimal size of any k-perceptron
representation of I. An s-sparse k-perceptron is a k-perceptron I such that the size
of I is at most s. We denote by PI: the set of Boolean functions over {O, 1}n which
can be represented as k-perceptrons, and we define Pk = Un Pi:. The subclass of
s-sparse k-perceptrons is denoted by Pk,/l" We are also interested in the class P~
of k-perceptrons with real-valued weights, at most r of which are non-zero.

3 The Learning Algorithm

In this section we develop our learning algorithm and prove certain performance
guarantees. Our algorithm is based on a recent "hypothesis boosting" algorithm
that we describe after reviewing some basic learning-theory terminology.

3.1 PAC Learning and Hypothesis Boosting

Following Valiant (1984), we say that a function class :F (such as Pk for fixed k)
is (strongly) PAC-learnable if there is an algorithm A and a polynomial function
PI such that for any positive f and 8, any I E :F (the target junction), and any
probability distribution D over the domain of I, with probability at least 1 -
8, algorithm A(EX(f, D), f, 8) produces a function h (the hypothesis) such that
Pr[PrD[/(x) I- hex)] > f] < 8. The outermost probability is over the random choices
made by the EX oracle and any random choices made by A. Here EX(f, D) denotes
an oracle that, when queried, chooses a vector of input values x with probability
D and returns the pair (x,/(x)) to A. The learning algorithm A must run in time
PI (n, s, c 1 , 8-1), where n is the length of the input vector to I and s is the size of

656 J. C. JACKSON, M. W. CRAVEN

AdaBoost
Input: training set S of m examples of function f, weak learning algorithm WL that
is (~ - 'Y)-approximate, l'
Algorithm:

1. T +-- ~ In(m)
2. for all xES, w(x) +-- l/m
3. for i = 1 to T do
4. for all XES, Di(X) +-- w(x)/ L:l=l w(x).
5. invoke WL on S and distribution Di, producing weak hypothesis hi
6. €i +-- L:z.h;(z);oI:/(z) Di(X)
7. (3i +-- €i/ (1 - €i)
8. for all XES, if h(x) = f(x) then w(x) +-- w(x) . (3i
9. enddo

Output: h(x) == sign (L::=l -In((3i) . hi{x))

Figure 1: The AdaBoost algorithm.

f; the algorithm is charged one unit of time for each call to EX. We sometimes
call the function h output by A an €-approximator (or strong approximator) to f
with respect to D. If F is PAC-learnable by an algorithm A that outputs only
hypotheses in class 1£ then we say that F is PAC-learnable by 1£. If F is PAC
learnable for € = 1/2 - 1/'P2(n, s), where'P2 is a polynomial function, then :F is
weakly PA C-learnable, and the output hypothesis h in this case is called a weak
approximator.

Our algorithm for finding sparse perceptrons is, as indicated earlier, based on the
notion of hypothesis boosting. The specific boosting algorithm we use (Figure 1)
is a version of the recent AdaBoost algorithm (Freund & Schapire, 1995). In the
next section we apply AdaBoost to "boost" a weak learning algorithm for Pk,8 into
a strong learner for Pk,8' AdaBoost is given a set S of m examples of a function
f : {O,1}n ---+ {-1, +1} and a weak learning algorithm WL which takes € = ! - l'
for a given l' b must be bounded by an inverse polynomial in nand s). Adaf300st
runs for T = In(m)/(2'Y2) stages. At each stage it creates a probability distribution
Di over the training set and invokes WL to find a weak hypothesis hi with respect
to Di (note that an example oracle EX(j, Di) can be simulated given Di and S).
At the end of the T stages a final hypothesis h is output; this is just a weighted
threshold over the weak hypotheses {hi I 1 ~ i ~ T}. If the weak learner succeeds
in producing a (~-'Y)-approximator at each stage then AdaBoost's final hypothesis
is guaranteed to be consistent with the training set (Freund & Schapire, 1995).

3.2 PAC-Learning Sparse k-Perceptrons

We now show that sparse k-perceptrons are PAC learnable by real-weighted k
perceptrons having relatively few nonzero weights. Specifically, ignoring log factors,
Pk,8 is learnable by P~O(82) for any constant k. We first show that, given a training

set for any f E Pk,8' we can efficiently find a consistent h E p~(8 2)' This consis
tency algorithm is the basis of the algorithm we later apply to empirical learning
problems. We then show how to turn the consistency algorithm into a PAC learning
algorithm. Our proof is implicit in somewhat more general work by Freund (1993),
although he did not actually present a learning algorithm for this class or analyze

Learning Sparse Perceptrons 657

the sample size needed to ensure f-approximation, as we do. Following Freund, we
begin our development with the following lemma (Goldmann et al., 1992):

Lemma 1 (Goldmann Hastad Razhorov) For I: {0,1}n -+ {-1,+1} and H,
any set 01 functions with the same domain and range, il I can be represented as
I(x) = sign(L::=l hi(X», where hi E H, then lor any probability distribution D
over {O, 1}n there is some hi such that PrD[f(x) ¥- hi(x)] ~ ~ - 218 '

If we specialize this lemma by taking H = Ck (recall that Ck is the set of conjunc
tions of at most k input features of f) then this implies that for any I E Pk,8 and
any probability distribution D over the input features of I there is some hi E Ck
that weakly approximates I with respect to D. Therefore, given a training set S
and distribution D that has nonzero weight only on instances in S, the following
simple algorithm is a weak learning algorithm for Pk: exhaustively test each of the
O(nk) possible conjunctions of at most k features until we find a conjunction that a - 218)-approximates I with respect to D (we can efficiently compute the approx
imation of a conjunction hi by summing the values of D over those inputs where hi
and I agree). Any such conjunction can be returned as the weak hypothesis. The
above lemma proves that if I is a k-perceptron then this exhaustive search must
succeed at finding such a hypothesis. Therefore, given a training set of m examples
of any s-sparse k-perceptron I, AdaBoost run with the above weak learner will, af
ter 2s2In(m) stages, produce a hypothesis consistent with the training set. Because
each stage adds one weak hypothesis to the output hypothesis, the final hypothesis
will be a real-weighted k-perceptron with at most 2s2In(m) nonzero weights.

We can convert this consistency algorithm to a PAC learning algorithm as follows.
First, given a finite set of functions F, it is straightforward to show the following
(see, e.g., Haussler, 1988):

Lemma 2 Let F be a finite set ollunctions over a domain X. For any function
lover X, any probability distribution D over X, and any positive f and ~, given a
set S ofm examples drawn consecutively from EX(f, D), where m ~ f-1(ln~-1 +
In IFI), then Pr[3h E F I "Ix E S f(x) = h(x) & Prv[/(x) ¥- h(x)] > f] < ~, where
the outer probability is over the random choices made by EX(f,D).

The consistency algorithm above finds a consistent hypothesis in P~, where r =
2s2 In(m). Also, based on a result of Bruck (1990), it can be shown that In IP~I =
o (r2 + kr log n). Therefore, ignoring log factors, a randomly-generated training set
of size O(kS4 If) is sufficient to guarantee that, with high probability, our algorithm
will produce an f-approximator for any s-sparse k-perceptron target. In other words,
the following is a PAC algorithm for Pk,8: compute sufficiently large (but polynomial
in the PAC parameters) m, draw m examples from EX(f, D) to create a training
set, and run the consistency algorithm on this training set.

So far we have shown that sparse k-perceptrons are learnable by sparse perceptron
hypotheses (with potentially polynomially-many more weights). In practice, of
course, we expect that many real-world classification tasks cannot be performed
exactly by sparse perceptrons. In fact, it can be shown that for certain (reasonable)
definitions of "noisy" sparse perceptrons (loosely, functions that are approximated
reasonably well by sparse perceptrons), the class of noisy sparse k-perceptrons is
still PAC-learnable. This claim is based on results of Aslam and Decatur (1993),
who present a noise-tolerant boosting algorithm. In fact, several different boosting
algorithms could be used to learn Pk,s (e.g., Freund, 1993). We have chosen to use
AdaBoost because it seems to offer significant practical advantages, particularly in
terms of efficiency. Also, our empirical results to date indicate that our algorithm

658 J. C. JACKSON, M. W. CRAVEN

works very well on difficult (presumably "noisy") real-world problems. However,
one potential advantage of basing the algorithm on one of these earlier boosters
instead of AdaBoost is that the algorithm would then produce a perceptron with
integer weights while still maintaining the sparseness guarantee of the AdaBoost
based algorithm.

3.3 Practical Considerations

We turn now to the practical details of our algorithm, which is based on the consis
tency algorithm above. First, it should be noted that the theory developed above
works over discrete input domains (Boolean or nominal-valued features). Thus, in
this paper, we consider only tasks with discrete input features. Also, because the
algorithm uses exhaustive search over all conjunctions of size k, learning time de
pends exponentially on the choice of k. In this study we to use k = 2 throughout,
since this choice results in reasonable learning times.

Another implementation concern involves deciding when the learning algorithm
should terminate. The consistency algorithm uses the size of the target function
in calculating the number of boosting stages. Of course, such size information is
not available in real-world applications, and in fact, the target function may not be
exactly representable as a sparse perceptron. In practice, we use cross validation
to determine an appropriate termination point. To facilitate comprehensibility, we
also limit the number of boosting stages to at most the number of weights that
would occur in an ordinary perceptron for the task. For similar reasons, we also
modify the criteria used to select the weak hypothesis at each stage so that simple
features are preferred over conjunctive features. In particular, given distribution
D at some stage j, for each hi E Ck we compute a correlation Ev[/ . hi]. We
then mUltiply each high-order feature's correlation by i. The hi with the largest
resulting correlation serves as the weak hypothesis for stage j.

4 Empirical Evaluation

In our experiments, we are interested in assessing both the generalization ability
and the complexity of the hypotheses produced by our algorithm. We compare our
algorithm to ordinary perceptrons trained using backpropagation (Rumelhart et al.,
1986), multi-layer perceptrons trained using backpropagation, and decision trees
induced using the C4.5 system (Quinlan, 1993). We use C4.5 in our experiments as
a representative of "symbolic" learning algorithms. Symbolic algorithms are widely
believed to learn hypotheses that are more comprehensible than neural networks.
Additionally, to test the hypothesis that the performance of our algorithm can be
explained solely by its use of second-order features, we train ordinary perceptrons
using feature sets that include all pairwise conjunctions, as well as the ordinary
features. To test the hypothesis that the performance of our algorithm can be
explained by its use of relatively few weights, we consider ordinary perceptrons
which have been pruned using a variant of the Optimal Brain Damage (OBD)
algorithm (Le Cun et al., 1989). In our version of OBD, we train a perceptron until
the stopping criteria are met, prune the weight with the smallest salience, and then
iterate the process. We use a validation set to decide when to stop pruning weights.
For each training set, we use cross-validation to select the number of hidden units
(5, 10, 20, 40 or 80) for the MLP's, and the pruning confidence level for the C4.5
trees. We use a validation set to decide when to stop training for the MLP's.

We evaluate our algorithm using three real-world domains: the voting data set from
the UC-Irvine database; a promoter data set which is a more complex superset of

Learning Sparse Perceptrons 659

a e : es -se accuracy. T bl 1 11 t t
perceptrons

domain boosting C4.5 multi-layer ordinary 2nd-order pruned
voting 91.5% 89.2% * 92.2% 90.8% 89.2% * 87.6% *
promoter 92.7 84.4 * 90.6 90.0 * 88.7 * 88.2 * coding 72.9 62.6 * 71.6 * 70.7 * 69.8 * 70.3 *

Table 2: Hypothesis complexity (# weights).
perceptrons

domain boosting multi-layer ordinary 2nd-order pruned
voting 12 651 30 450 12
promoters 41 2267 228 25764 59
protein coding 52 4270 60 1740 37

U C-Irvine one; and a data set in which the task is to recognize protein-coding
regions in DNA (Craven & Shavlik, 1993). We remove the physician-fee-freeze
feature from the voting data set to make the problem more difficult. We conduct
our experiments using a lO-fold cross validation methodology, except for in the
protein-coding domain. Because of certain domain-specific characteristics of this
data set, we use 4-fold cross-validation for our experiments with it.

Table 1 reports test-set accuracy for each method on all three domains. We mea
sure the statistical significance of accuracy differences using a paired, two-tailed
t-test. The symbol '*' marks results in cases where another algorithm is less ac
curate than our boosting algorithm at the p ::; 0.05 level of significance. No other
algorithm is significantly better than our boosting method in any of the domains.
From these results we conclude that (1) our algorithm exhibits good generalization
performance on number of interesting real-world problems, and (2) the generaliza
tion performance of our algorithm is not explained solely by its use of second-order
features, nor is it solely explained by the sparseness of the perceptrons it produces.
An interesting open question is whether perceptrons trained with both pruning and
second-order features are able to match the accuracy of our algorithm; we plan to
investigate this question in future work.

Table 2 reports the average number of weights for all of the perceptrons. For all
three problems, our algorithm produces perceptrons with fewer weights than the
MLP's, the ordinary perceptrons, and the perceptrons with second-order features.
The sizes of the OBD-pruned perceptrons and those produced by our algorithm
are comparable for all three domains. Recall, however, that for all three tasks,
the perceptrons learned by our algorithm had significantly better generalization
performance than their similar-sized OBD-pruned counterparts. We contend that
the sizes of the perceptrons produced by our algorithm are within the bounds of
what humans can readily understand. In the biological literature, for example, linear
discriminant functions are frequently used to communicate domain knowledge about
sequences of interest. These functions frequently involve more weights than the
perceptrons produced by our algorithm. We conclude, therefore, that our algorithm
produces hypotheses that are not only accurate, but also comprehensible.

We believe that the results on the protein-coding domain are especially interesting.
The input representation for this problem consists of 15 nominal features represent
ing 15 consecutive bases in a DNA sequence. In the regions of DNA that encode
proteins (the positive examples in our task), non-overlapping triplets of consecu-

660 J. C. JACKSON, M. W. eRA VEN

tive bases represent meaningful "words" called codons. In previous work (Craven
& Shavlik, 1993), it has been found that a feature set that explicitly represents
codons results in better generalization than a representation of just bases. How
ever, we used the bases representation in our experiments in order to investigate the
ability of our algorithm to select the "right" second-order features. Interestingly,
nearly all of the second-order features included in our sparse perceptrons represent
conjunctions of bases that are in the same codon. This result suggests that our
algorithm is especially good at selecting relevant features from large feature sets.

5 Future Work

Our present algorithm has a number of limitations which we plan to address. Two
areas of current research are generalizing the algorithm for application to problems
with real-valued features and developing methods for automatically suggesting high
order features to be included in our algorithm's feature set.

Acknowledgements

Mark Craven was partially supported by ONR grant N00014-93-1-0998. Jeff Jackson
was partially supported by NSF grant CCR-9119319.

References

Aslam, J. A. & Decatur, S. E. (1993). General bounds on statistical query learning and
PAC learning with noise via hypothesis boosting. In Proc. of the 34th Annual Annual
Symposium on Foundations of Computer Science, (pp. 282-291).

Bruck, J . (1990). Harmonic analysis of polynomial threshold functions. SIAM Journal
of Discrete Mathematics, 3(2):168-177.

Craven, M. W. & Shavlik, J. W. (1993) . Learning to represent codons: A challenge
problem for constructive induction. In Proc. of the 13th International Joint Conf. on
Artificial Intelligence, (pp. 1319-1324), Chambery, France.

Freund, Y. (1993). Data Filtering and Distribution Modeling Algorithms for Machine
Learning. PhD thesis, University of California at Santa Cruz.

Freund, Y. & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learn
ing and an application to boosting. In Proc. of the ~nd Annual European Conf. on
Computational Learning Theory.

Goldmann, M., Hastad, J., & Razborov, A. (1992). Majority gates vs. general weighted
threshold gates. In Proc. of the 7th IEEE Conf. on Structure in Complexity Theory.

Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant's
learning framework. Artificial Intelligence, (pp. 177-221).

Le Cun, Y., Denker, J. S., & Solla, S. A. (1989). Optimal brain damage. In Touretzky,
D., editor, Advances in Neural Information Processing Systems (volume ~).

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations
by error propagation. In Rumelhart, D. & McClelland, J., editors, Parallel Distributed
Processing: Explorations in the microstructure of cognition. Volume 1. MIT Press.

Spackman, K. A. (1988). Learning categorical decision criteria. In Proc. of the 5th
International Conf. on Machine Learning, (pp. 36-46), Ann Arbor, MI.

Stormo, G. (1987). Identifying coding sequences. In Bishop, M. J. & Rawlings, C. J.,
editors, Nucleic Acid and Protein Sequence Analysis: A Practical Approach. IRL Press.

Valiant,1. G. (1984). A theory of the learnable. Comm. of the ACM, 27(11):1134-1142.

