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Abstract 

It has remained unknown whether one can in principle carry out 
reliable digital computations with networks of biologically realistic 
models for neurons. This article presents rigorous constructions 
for simulating in real-time arbitrary given boolean circuits and fi­
nite automata with arbitrarily high reliability by networks of noisy 
spiking neurons. 

In addition we show that with the help of "shunting inhibition" 
even networks of very unreliable spiking neurons can simulate in 
real-time any McCulloch-Pitts neuron (or "threshold gate"), and 
therefore any multilayer perceptron (or "threshold circuit") in a 
reliable manner. These constructions provide a possible explana­
tion for the fact that biological neural systems can carry out quite 
complex computations within 100 msec. 

It turns out that the assumption that these constructions require 
about the shape of the EPSP's and the behaviour of the noise are 
surprisingly weak. 

1 Introduction 

We consider networks that consist of a finite set V of neurons, a set E ~ V x V of 
synapses, a weightwu,v ~ 0 and a response junctioncu,v : R+ -+ R for each synapse 
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(u,v) E E (where R+ := {x E R: x ~ O}), and a threshold/unction Sv : R+ --t R+ 
for each neuron v E V. 

If F u ~ R + is the set of firing times of a neuron u, then the potential at the trigger 
zone of neuron v at time t is given by Pv(t) := L L wu,v' 

u : (u, v) E EsE Fu : s < t 
eu,v(t - s). The threshold function Sv(t - t') quantifies the "reluctance" of v to 
fire again at time t, if its last previous firing was at time t'. We assume that 
Sv(O) E (0,00), Sv(x) = 00 for x E (0, 'TreJ] (for some constant 'TreJ > 0, the 
"absolute refractory period"), and sup{Sv(x) : X ~ 'T} < 00 for any'T > 'TreJ. 

In a deterministic model for a spiking neuron (Maass, 1995a, 1996) one can assume 
that a neuron v fires exactly at those time points t when Pv(t) reaches (from below) 
the value Sv(t - t'). We consider in this article a biologically more realistic model, 
where as in (Gerstner, van Hemmen, 1994) the size of the difference Pv(t)-Sv(t-t') 
just governs the probability that neuron v fires. The choice of the exact firing times 
is left up to some unknown stochastic processes, and it may for example occur that 
v does not fire in a time intervall during which Pv (t) - Sv(t - t') > 0, or that v fires 
"spontaneously" at a time t when Pv(t) -Sv(t-t') < O. We assume that (apart from 
their communication via potential changes) the stochastic processes for different 
neurons v are independent. It turns out that the assumptions that one has to make 
about this stochastic firing mechanism in order to prove our results are surprisingly 
weak. We assume that there exist two arbitrary functions L, U : R X R+ ----1 [0,1] so 
that L(~, i) provides a lower bound (and U(~, i) provides an upper bound) for the 
probability that neuron v fires during a time intervall of length e with the property 
that Pv(t)-Sv(t-t') ~ ~ (respectively Pv(t)-Sv(t-t') ~ ~) for all tEl up to the 
next firing of v (t' denotes the last firing time of v be/ore I). We just assume about 
these functions Land U that they are non-decreasing in each of their two arguments 
(for any fixed value of the other argument), that lim U(~, i) = ° for any fixed 

~~-oo 

i > 0, and that lim L(~, e) > 0 for allY fixed e ~ R/6 (where R is the assumed 
~~OO 

length of the rising segment of an EPSP, see below). The neurons are allowed to 
be "arbitrarily noisy" in the sense that the difference lim L(~, i) - lim U(~, i) 

~~OO ~~-oo 

can be arbitrarily small. Hence our constructions also apply to neurons that exhibit 
persistent firing failures, and they also allow for synapses that fail with a rather high 
probability. Furthermore a detailed analysis of our constructions shows that we can 
relax the somewhat dubious assumption that the noise-distributions for different 
neurons are independent. Thus we are also able to deal with "systematic noise" in 
the distribution of firing times of neurons in a pool (e.g. caused by changes in the 
biochemical environment that simultaneously affect many neurons in a pool). 

It turns out that it suffices to assume only the following rather weak properties of 
the other functions involved in our model: 

1) Each response function CU , I ) : R+ ----1 R is either excitatory or inhibitory 
(and for the sake of biological realism one may assume that each neuron u induces 
only one type of response). All excitatory response functions eu,v(x) have the value 
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o for x E [O,~u,v), and the value eE(X - ~u,v) for x ~ ~u,v, where ~u,v ~ 0 is 
the delay for this synapse between neurons u and v, and e E is the common shape 
of all excitatory response functions ("EPSP's))). Corresponding assumptions are 
made about the inhibitory response functions ("IPSP's))), whose common shape is 
described by some function eI : R+ -+ {x E R : x ~ O}. 

2) eE is continuous, eE(O) = 0, eE(X) = 0 for all sufficiently large x, and there 
exists some parameter R > 0 such that eE is non-decreasing in [0, R], and some 
parameter p > 0 such that eE(X + R/6) ~ p + eE (x) for all x E [O,2R/3]. 

3) _eI satisfies the same conditions as eE . 

4) There exists a source BN- of negative "background noise", that contributes 
to the potential Pv(t) of each neuron v an additive term that deviates for an arbi­
trarily long time interval by an arbitrarily small percentage from its average value 
w; ~ 0 (which we can choose). One can delete this assumption if one assumes that 
the firing threshold of neurons can be shifted by some other mechanism. 

In section 3 we will assume in addition the availability of a corresponding positive 
background noise BN+ with average value wt ~ O. 
In a biological neuron tI one can interpret BN- and BN+ as the combined effect 
of a continuous bombardment with a very large number of IPSP's (EPSP's) from 
randomly firing neurons that arrive at remote synapses on the dendritic tree of v. 

We assume that we can choose the values of delays ~u, v and weights Wu,v, wt ,w; . 
We refer to all assumptions specified in this section as our "weak assumptions" 
about noisy spiking neurons. It is easy to see that the most frequently studied 
concrete model for noisy spiking neurons, the spike response model (Gerstner and 
van Hemmen, 1994) satisfies these weak assumptions, and is hence a special case. 
However not even for the more concrete spike response model (or any other model 
for noisy spiking neurons) there exist any rigorous results about computations in 
these models . In fact, one may view this article as being the first that provides 
results about the computational complexity of neural networks for a neuron model 
that is acceptable to many neurobiologistis as being reasonably realistic. 

In this article we only address the problem of reliable digital computing with noisy 
spiking neurons . For details of the proofs we refer to the forthcoming journal-version 
of this extended abstract. For results about analog computations with noisy spiking 
neurons we refer to Maass, 1995b. 

2 Simulation of Boolean Circuits and Finite Automata with 
Noisy Spiking Neurons 

Theorem 1: For any deterministic finite automaton D one can construct a net­
work N(D) consisting of any type of noisy spiking neurons that satisfy our weak 
assumptions, so that N(D) can simulate computations of D of any given length 
with arbitrarily high probability of correctness. 
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Idea of the proof: Since the behaviour of a single noisy spiking neuron is completely 
unreliable, we use instead pools A, B, ... of neurons as the basic building blocks in 
our construction, where all neurons v in the same pool receive approximately the 
same "input potential" Pv(t). The intricacies of our stochastic neuron model allow 
us only to employ a "weak coding" of bits, where a "1" is represented by a pool A 
during a time interval I, if at least PI ·IAI neurons in A fire (at least once) during I 
(where PI > 0 is a suitable constant), and "0" is represented if at most Po ·IAI firings 
of neurons occur in A during I, where Po with 0 < Po < PI is another constant (that 
can be chosen arbitrarily small in our construction). 

The described coding scheme is weak since it provides no useful upper bound (e.g. 
1.5·Pl ·IAI) on the number of neurons that fire during I if A represents a "1" (nor on 
the number of firings of a single neuron in A). It also does not impose constraints 
on the exact timing of firings in A within I. However a "0" can be represented more 
precisely in our model, by choosing po sufficiently small. 

The proof of Theorem 1 shows that this weak coding of bits suffices for reliable 
digital computations. The idea of these simulations is to introduce artificial nega­
tions into the computation, which allow us to exploit that "0" has a more precise 
representation than "1". It is apparently impossible to simulate an AND-gate in a 
straightforward fashion for a weak coding of bits, but one can simulate a NOR-gate 
in a reliable manner. • 

Corollary 2: Any boolean function can be computed by a sufficiently large network 
of noisy spiking neurons (that satisfy our weak assumptions) with arbitrarily high 
probability of correctness. 

3 Fast Simulation of Threshold Circuits via Shunting 
Inhibition 

For biologically realistic parameters, each computation step in the previously con­
structed network takes around 25 msec (see point b) in section 4}. However it 
is well-known that biological neural systems can carry out complex computations 
within just 100 msec (Churchland, Sejnowski, 1992). A closer inspection of the pre­
ceding construction shows, that one can simulate with the same speed also OR- and 
NOR-gates with a much larger fan-in than just 2. However wellknown results from 
theoretical computer science (see the results about the complexity class ACo in the 
survey article by Johnson in (van Leeuwen, 1990)) imply that for any fixed number 
of layers the computational power of circuits with gates for OR, NOR, AND, NOT 
remains very weak, even if one allows any polynomial size fan-in for such gates. 

In contrast to that, the construction in this section will show that by using a biolog­
ically more realistic model for a noisy spiking neuron, one can in principle simulate 
within 100 msec 3 or more layers of a boolean circuit that employs substantially 
more powerful boolean gates: threshold gates (Le. "Mc Culloch-Pitts neurons", also 
called "perceptrons"). The use of these gates provides a giant leap in computational 
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power for boolean circuits with a small number of layers: In spite of many years of 
intensive research, one has not been able to exhibit a single concrete computational 
problem in the complexity classes P or NP that can be shown to be not computable 
by a polynomial size threshold circuit with 3 layers (for threshold circuits with 
integer weights of unbounded size the same holds already for just 2 layers). 

In the neuron model that we have employed so far in this article, we have assumed 
(as it is common in the spike response model) that the potential Pv (t) at the trigger 
zone of neuron v depends linearly on all the terms Wu ,v . cu,v(t - s). There exists 
however ample biological evidence that this assumption is not appropriate for cer­
tain types of synapses. An example are synapses that carry out shunting inhibition 
(see. e.g. (Abeles, 1991) and (Shepherd, 1990)). When a synapse of this type (lo­
cated on the dendritic tree of a neuron v) is activated, it basically erases (through 
a short circuit mechanism) for a short time all EPSP's that pass the location of 
this synapse on their way to the trigger zone of v. However in contrast to those 
IPSP's that occur linearly in the formula for Pv(t) , the activation of such synapse 
for shunting inhibition has no impact on those EPSP's that travel to the trigger 
ZOne of v through another part of its dendritic tree. We model shunting inhibition 
in our framework as follows . We write r for the subset of all neurons 'Y in V that 
can "veto" other synapses (u, v) via shunting inhibition (we assume that the neu­
rons in r have no other role apart from that). We allow in our formal model that 
certain 'Y in r are assigned as label to certain synapses (u, v) that have an excitatory 
response function cu,v. If'Y is a label of (u, v), then this models the situation that 
'Y can intercept EPSP's from u on their way to the trigger zone of v via shunting 
inhibition. We then define 

Pv(t) = L (L wtt ,tJ . Ett,v(t - s) . II s...,(t)) , 

u E V : (u, v) E EsE Ftt : s < t 'Y is label of (u, v) 

where we assume that S...,(t) E [0,1] is arbitrarily close to 0 for a short time interval 
after neuron 'Y has fired , and else equal to 1. The firing mechanism for neurons 
'Y E r is defined like for all other neurons. 

Theorem 3: One can simulate any threshold circuit T by a sufficiently large net­
work N(T) of noisy spiking neurons with shunting inhibition (with arbitrarily high 
probability of correctness) . The computation time of N(T) does not depend on the 
number of gates in each layer, and is proportional to the number of layers in the 
threshold circuit T. 

Idea of the proof of Theorem 3: It is already impossible to simulate in a straight­
forward manner an AND-gate with weak coding of bits . The same difficulties arise 
in an even more drastic way if one wants to simulate a threshold gate with large 
fan-in. 

The left part of Figure 1 indicates that with the help of shunting inhibition one can 
transform via an intermediate pool of neurons Bl the bit that is weakly encoded by 
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Al into a contribution to Pv(t) for neurons v E C that is throughout a time interval 
J arbitrarily close to 0 if Al encodes a "0", and arbitrarily close to some constant 
P* > 0 if Al encodes a "I" (we will call this a "strong coding" of a bit). Obviously 
it is rather easy to realize a threshold gate if one can make use of such strong coding 
of bits. 
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Figure 1: Realization of a threshold gate G via shunting inhibition (SI). 

The task of the module in Figure 1 is to simulate with noisy spiking neurons a 
n 

given boolean threshold gate G that outputs 1 if L: Q:iXi ~ e, and 0 else. For 
i=I 

simplicity Figure 1 shows only the pool Al whose firing activity encodes (in weak 
coding) the first input bit Xl. The other input bits are represented (in weak coding) 
simultaneously in pools A:l> ... , An parallel to AI. If Xl = 0, then the firing activity 
in pool Al is low, hence the shunting inhibition from pool Bl intercepts those 
EPSP's that are sent from BN+ to each neuron v in pool C. More precisely, 
we assume that each pool Bi associated with a different input bit Xi carries out 
shunting inhibition on a different subtree of the dendritic tree of such neurOn v 
(where each such subtree receives EPSP's from BN+). If Xl = 1, the higher firing 
activity in pool Al inhibits the neurons in BI for some time period. Hence during 
the relevant time interval BN+ contributes an almost constant positive summand 
to the potential Pv(t) of neurons v in C. By choosing wt and w; appropriately, 
one can achieve that during this time interval the potential Pv(t) of neurons v in 

11 

C is arbitrarily much positive if L: Q:iXi ~ e, and arbitrarily much negative if 
i=1 

n 
L: Q:iXi < e. Hence the activity level of C encodes the output bit of the threshold 
i=l 

gate G (in weak coding). The purpose of the subsequent pools D and F is to 
synchronize (with the help of "double-negation") the output of this module via a 
pacemaker or synfire chain PM. In this way one can achieve that all input "bits" to 
another module that simulates a threshold gate On the next layer of circuit T arrive 
simultaneously. • 
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4 ConcI usion 

Our constructions throw new light on various experimental data, and on our at­
tempts to understand neural computation and coding: 

a) If One would record all firing times of a few arbitrarily chosen neurons in 
our networks during many repetitions of the same computation, one is likely to 
see that each run yields quite different seemingly random firing sequences, where 
however a few firing patterns will occur more frequently than could be explained by 
mere chance. This is consistent with the experimental results reported in (Abeles, 
1991), and one should also note that the synfire chains of (Abeles, 1991) have many 
features in common with the here constructed networks. 

b) If one plugs in biologically realistic values (see (Shepherd, 1990), (Church­
land, Sejnowski, 1992)) for the length of transmission delays (around 5 msec) and 
the duration of EPSP's and IPSP's (around 15 msec for fast PSP's), then the com­
putation time of our modules for NOR- and threshold gates comes out to be not 
more than 25 msec. Hence in principle a multi-layer perceptron with up to 4 layers 
can be simulated within 100 msec. 

c) Our constructions provide new hypotheses about the computational roles 
of regular and shunting inh'ibition, that go far beyond their usually assumed roles. 

d) We provide new hypotheses regarding the computational role of randomly 
firing neurons, and of EPSP's and IPSP's that arrive through synapses at distal 
parts of biological neurons (see the use of BN+ and BN- in our constructions). 
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