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Abstract 

An analogue VLSI neural network has been designed and tested 
to perform cardiac morphology classification tasks. Analogue tech
niques were chosen to meet the strict power and area requirements 
of an Implantable Cardioverter Defibrillator (ICD) system. The ro
bustness of the neural network architecture reduces the impact of 
noise, drift and offsets inherent in analogue approaches. The net
work is a 10:6:3 multi-layer percept ron with on chip digital weight 
storage, a bucket brigade input to feed the Intracardiac Electro
gram (ICEG) to the network and has a winner take all circuit 
at the output. The network was trained in loop and included a 
commercial ICD in the signal processing path. The system has suc
cessfully distinguished arrhythmia for different patients with better 
than 90% true positive and true negative detections for dangerous 
rhythms which cannot be detected by present ICDs. The chip was 
implemented in 1.2um CMOS and consumes less than 200n W max
imum average power in an area of 2.2 x 2.2mm2. 

1 INTRODUCTION 

To the present time, most ICDs have used timing information from ventricular 
leads only to classify rhythms which has meant some dangerous rhythms can not 
be distinguished from safe ones, limiting the use of the device. Even two lead 
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Figure 1: The Morphology of ST and VT retrograde 1:1. 

atrial/ventricular systems fail to distinguish some rhythms when timing informa
tion alone is used [Leong and Jabri, 1992]. A case in point is the separation of Si
nus Tachycardia (ST) from Ventricular Tachycardia with 1:1 retrograde conduction. 
ST is a safe arrhythmia which may occur during vigorous exercise and is charac
terised by a heart rate of approximately 120 beats/minute. VT retrograde 1:1 also 
occurs at the same low rate but can be a potentially fatal condition. False negative 
detections can cause serious heart muscle injury while false positive detections de
plete the batteries, cause patient suffering and may lead to costly transplantation 
of the device. Figure 1 shows however, the way in which the morphology changes 
on the ventricular lead for these rhythms. Note, that the morphology change is 
predominantly in the "QRS complex" where the letters QRS are the conventional 
labels for the different points in the conduction cycle during which the heart is 
actually pumping blood. 

For a number of years, researchers have studied template matching schemes in order 
to try and detect such morphology changes. However, techniques such as correlation 
waveform analysis [Lin et. al., 1988], though quite successful are too computation
ally intensive to meet power requirements. In this paper, we demonstrate that 
an analogue VLSI neural network can detect such morphology changes while still 
meeting the strict power and area requirements of an implantable system. The 
advantages of an analogue approach are born out when one considers that an en
ergy efficient analogue to digital converter such as [Kusumoto et. al., 1993] uses 
1.5nJ per conversion implying 375n W power consumption for analogue to digital 
conversion of the ICEG alone. Hence, the integration of a bucket brigade device and 
analogue neural network provides a very efficient way of interfacing to the analogue 
domain. Further, since the network is trained in loop with the ICD in real time, 
the effects of device offsets, noise, QRS detection jitter and signal distortion in the 
analogue circuits are largely alleviated. 

The next section discusses the chip circuit designs. Section 3 describes the method 
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Figure 2: Floor Plan and Photomicrograph of the chip 
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used to train the network for the morphology classification task. Section 4 describes 
the classifier performance on seven patients with arrhythmia which can not be 
distinguished using the heart rate only. Section 5 summarises the results, remaining 
problems and future directions for the work . 

2 ARCHITECTURE 

The neural network chip consists of a 10:6:3 multilayer perceptron, an input bucket 
brigade device (BBD) and a winner take all (WTA) circuit at the output. A floor 
plan and photomicrograph of the chip appears in figure 2. The BBD samples the 
incoming ICEG at a rate of 250Hz. For three class problems, the winner take all 
circuit converts the winning class to a digital signal. For the two class problem 
considered in this paper , a simple thresholding function suffices. The following 
subsections briefly describe the functional elements of the chip . The circuit diagrams 
for the chip building blocks appear in figure 3. 

2.1 BUCKET BRIGADE DEVICE 

One stage of the bucket brigade circuit is shown in figure 3. The BBD uses a 
two phase clock to shift charge from cell to cell and is based on a design by 
Leong [Leong, 1992] . The BBD operates by transferring charge deficits from S 
to D in each of the cells. PHIl and PHI2 are two phase non-overlapping clocks. 
The cell is buffered from the synapse array to maintain high charge transfer effi
ciency. A sample and hold facility is provided to store the input on the gates of the 
synapses. The BBD clocks are generated off chip and are controlled by the QRS 
complex detector in the lCD. 

2.2 SYNAPSE 

This synapse has been used on a number of neural network chips previously. 
e.g . [Coggins et. al., 1994] . The synapse has five bits plus sign weight storage which 
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Figure 3: Neuron, Bucket Brigade and Synapse Circuit Diagrams. 

sets the bias to a differential pair which performs the multiplication. The bias ref
erences for the weights are derived from a weighted current source in the corner of 
the chip. A four quadrant multiplication is achieved by the four switches at the top 
of the differential pair. 

2.3 NEURON 

Due to the low power requirements, the bias currents of the synapse arrays are of 
the order of hundreds of nano amps, hence the neurons must provide an effective 
resistance of many mega ohms to feed the next synapse layer while also providing 
gain control. Without special high resistance polysilicon, simple resistive neurons 
use prohibitive area, However, for larger networks with fan-in much greater than 
ten, an additional problem of common mode cancellation is encountered, That is, 
as the fan-in increases, a larger common mode range is required or a cancellation 
scheme using common mode feedback is needed. 

The neuron of figure 3 implements such a cancellation scheme, The mirrors MO/M2 
and Ml/M3 divide the input current and facilitate the sum at the drain of M7. 
M7/M8 mirrors the sum so that it may be split into two equal currents by the 
mirrors formed by M4, M5 and M6 which are then subtracted from the input 
currents. Thus, the differential voltage vp - Vm is a function of the transistor 
transconductances, the common mode input current and the feedback factor , The 
gain of the neuron can be controlled by varying the width to length ratio of the 
mirror transistors MO and Ml. The implementation in this case allows seven gain 
combinations, using a three bit RAM cell to store the gain, 
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Figure 4: Block Diagram of the Training and Testing System. 
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The importance of a common mode cancellation scheme for large networks can 
be seen when compared to the straight forward approach of resistive or switched 
capacitor neurons. This may be illustrated by considering the energy usage of 
the two approaches. Firstly, we need to define the required gain of the neuron 
as a function of its fan-in . If we assume that useful inputs to the network are 
mostly sparse, i.e. with a small fraction of non-zero values, then the gain is largely 
independent of the fan-in, yet the common mode signal increases linearly with fan
in. For the case of a neuron which does not cancel the common mode, the power 
supply voltage must be increased to accommodate the common mode signal, thus 
leading to a quadratic increase in energy use with fan-in. A common mode cancelling 
neuron on the other hand , suffers only a linear increase in energy use with fan-in 
since extra voltage range is not required and the increased energy use arises only 
due to the linear increase in common mode current. 

3 TRAINING SYSTEM 

The system used to train and test the neural network is shown in figure 4. Control 
of training and testing takes place on the PC. The PC uses a PC-LAB card to 
provide analogue and digital I/O . The PC plays the ICEG signal to the input of 
the commercial ICD in real time. Note, that the PC is only required for initially 
training the network and in this case as a source of the heart signal. The commercial 
ICD performs the function of QRS complex detection using analogue circuits. The 
QRS complex detection signal is then used to freeze the BBD clocks of the chip, so 
that a classification can take place. 

When training, a number of examples of the arrhythmia to be classified are selected 
from a single patient data base recorded during an electrophysiological study and 
previously classified by a cardiologist . Since most of the morphological information 
is in the QRS complex, only these segments of the data are repeatedly presented to 
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Patient % Training Attempts Converged Average 
Run 1 Run ~ Iterations 

H=3 H = 6 H=3 H=6 
1 80 10 60 60 62 
2 80 100 0 10 86 
3 0 0 0 10 101 
4 60 10 40 40 77 
5 100 80 0 60 44 
6 100 40 60 60 46 
7 80 100 40 100 17 

Table 1: Training Performance of the system on seven patients. 

the network. The weights are adjusted according to the training algorithm running 
on the PC using the analogue outputs of the network to reduce the output error . 
The PC writes weights to the chip via the digital I/Os of the PC-LAB card and the 
serial weight bus of network. The software package implementing the training and 
testing, called MUME [Jabri et. al ., 1992], provides a suite of training algorithms 
and control options. Online training was used due to its success in training small 
networks and because the presentation of the QRS complexes to the network was 
the slowest part of the training procedure. The algorithm used for weight updates 
in this paper was summed weight node perturbation [Flower and Jabri, 1993]. 

The system was trained on seven different patients separately all of whom had 
VT with 1: 1 retrograde conduction. Note, that patient independent training has 
been tried but with mixed results [Tinker, 1992] . Table 1 summarises the training 
statistics for the seven patients. For each patient and each architecture, five training 
runs were performed starting from a different random initial weight set. Each 
of the patients was trained with eight of each class of arrhythmia. The network 
architecture used was 10:H:1, where H is the number of hidden layer neurons and 
the unused neurons being disabled by setting their input weights to zero. Two sets 
of data were collected denoted Run 1 and Run 2. Run 1 corresponded to output 
target values of ±0.6V within margin 0.45V and Run 2 to output target values of 
±0.2V within margin 0.05V. A training attempt was considered to have converged 
when the training set was correctly classified within two hundred training iterations. 
Once the morphologies to be distinguished have been learned for a given patient, 
the remainder of the patient data base is played back in a continuous stream and 
the outputs of the classifier at each QRS complex are logged and may be compared 
to the classifications of a cardiologist. The resulting generalisation performance is 
discussed in the next section. 

4 MORPHOLOGY CLASSIFIER GENERALISATION 
PERFORMANCE 

Table 2 summarises the generalisation performance of the system on the seven 
patients for the training attempts which converged. Most of the patients show a 
correct classification rate better than 90% for at least one architecture on one of the 
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Patient No. of % Correct Classifications Run 1 
Complexes H - i3 H = 6 
ST VT ST VT ST VT 

1 440 61 89±10 89±3 58±0 99±0 
2 94 57 99±1 99±1 100±0 99±1 
3 67 146 - - - -
4 166 65 66±44 76±37 99±1 50±3 
5 61 96 82±1 75±13 94±6 89±9 
6 61 99 84±8 97±1 90±5 99±1 
7 28 80 98±5 97±3 99±1 99±1 

% Correct Classifications Run 2 
1 440 61 88±2 99±1 86±14 99±1 
2 94 57 - - 94±6 94±3 
3 67 146 84±2 99±1 - -

4 166 65 76±18 59±2 87±7 100±0 
5 61 96 88±2 49±5 84±1 82±5 
6 61 99 92±6 90±10 99±1 99±1 
7 28 80 94±3 99±0 94±3 92±3 

Table 2: Generalisation Performance of the system on seven patients. 

runs, whereas, a timing based classifier can not separate these arrhythmia at all. 
For each convergent weight set the network classified the test set five times. Thus, 
the "% Correct" columns denote the mean and standard deviation of the classifier 
performance with respect to both training and testing variations. By duty cycling 
the bias to the network and buffers, the chip dissipates less than 200n W power for 
a nominal heart rate of 120 beats/minute during generalisation. 

5 DISCUSSION 

Referring to table 1 we see that the patient 3 data was relatively difficult to train. 
However, for the one occasion when training converged generalisation performance 
was quite acceptable. Inspection of this patients data showed that typically, the 
morphologies of the two rhythms were very similar. The choice of output targets, 
margins and architecture appear to be patient dependent and possibly interacting 
factors. Although larger margins make training easier for some patients they appear 
to also introduce more variability in generalisation performance. This may be due 
to the non-linearity of the neuron circuit. Further experiments are required to 
optimise the architecture for a given patient and to clarify the effect of varying 
targets, margins and neuron gain. Penalty terms could also be added to the error 
function to minimise the possibility of missed detections of the dangerous rhythm. 

The relatively slow rate of the heart results in the best power consumption being 
obtained by duty cycling the bias currents to the synapses and the buffers. Hence, 
the bias settling time of the weighted current source is the limiting factor for reduc
ing power consumption further for this design. By modifying the connection of the 
current source to the synapses using a bypassing technique to reduce transients in 
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the weighted currents, still lower power consumption could be achieved. 

6 CONCLUSION 

The successful classification of a difficult cardiac arrhythmia problem has been 
demonstrated using. an analogue VLSI neural network approach. Furthermore, the 
chip developed has shown very low power consumption of less than 200n W, meet
ing the requirements of an implantable system. The chip has performed well, with 
over 90% classification performance for most patients studied and has proved to be 
robust when the real world influence of analogue QRS detection jitter is introduced 
by a commercial implantable cardioverter defibrillator placed in the signal path to 
the classifier. 
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