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Abstract 

We present a graph-based method for rapid, accurate search 
through prototypes for transformation-invariant pattern classifica­
tion. Our method has in theory the same recognition accuracy as 
other recent methods based on ''tangent distance" [Simard et al., 
1994], since it uses the same categorization rule. Nevertheless ours 
is significantly faster during classification because far fewer tan­
gent distances need be computed. Crucial to the success of our 
system are 1) a novel graph architecture in which transformation 
constraints and geometric relationships among prototypes are en­
coded during learning, and 2) an improved graph search criterion, 
used during classification. These architectural insights are applica­
ble to a wide range of problem domains. Here we demonstrate that 
on a handwriting recognition task, a basic implementation of our 
system requires less than half the computation of the Euclidean 
sorting method. 

1 INTRODUCTION 

In recent years, the crucial issue of incorporating invariances into networks for pat­
tern recognition has received increased attention, most especially due to the work of 
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Simard and his colleagues. To a regular hierachical backpropagation network Simard 
et al. [1992] added a Jacobian network, which insured that directional derivatives 
were also learned. Such derivatives represented directions in feature space corre­
sponding to the invariances of interest, such as rotation, translation, scaling and 
even line thinning. On small training sets for a function approximation problem, 
this hybrid network showed performance superior to that of a highly tuned back­
propagation network taken alone; however there was negligible improvement on 
large sets. In order to find a simpler method applicable to real-world problems, 
Simard, Le Cun & Denker [1993] later used a variation of the nearest neighbor 
algorithm, one incorporating "tangent distance" (T-distance or DT ) as the classifi­
cation metric - the smallest Euclidean distance between patterns after the optimal 
transformation. In this way, state-of-the-art accuracy was achieved on an isolated 
handwritten character task, though at quite high computational complexity, owing 
to the inefficient search and large number of Euclidean and tangent distances that 
had to be calculated. 

Whereas Simard, Hastie & Saeckinger [1994] have recently sought to reduce this 
complexity by means of pre-clustering stored prototypes, we here take a different 
approach, one in which a (graph) data structure formed during learning contains 
information about transformations and geometrical relations among prototypes. 
Nevertheless, it should be noted that our method can be applied to a reduced 
(clustered) training set such as they formed, yielding yet faster recognition. Simard 
[1994] recently introduced a hierarchical structure of successively lower resolution 
patterns, which speeds search only if a minority of patterns are classified more 
accurately by using the tangent metric than by other metrics. In contrast, our 
method shows significant improvement even if the majority or all of the patterns 
are most accurately classified using the tangent distance. 

Other methods seeking fast invariant classification include Wilensky and 
Manukian's scheme [1994]. While quite rapid during recall, it is more properly 
considered distortion (rather than coherent transformation) invariant. Moreover, 
some transformations such as line thinning cannot be naturally incorporated into 
their scheme. Finally, it appears as if their scheme scales poorly (compared to 
tangent metric methods) as the number of invariances is increased. 

It seems somewhat futile to try to improve significantly upon the recognition ac­
curacy of the tangent metric approach - for databases such as NIST isolated 
handwritten characters, Simard et al. [1993] reported accuracies matching that 
of humans! Nevertheless, there remains much that can be done to increase the 
computational efficiency during recall. This is the problem we address. 

2 TRANSFORMATION INVARIANCE 

In broad overview, during learning our method constructs a labelled graph data 
structure in which each node represents a stored prototype (labelled by its category) 
as given by a training set, linked by arcs representing the T-distance between them. 
Search through this graph (for classification) takes advantage of the graph structure 
and an improved search criterion. To understand the underlying computations, we 
must first consider tangent space. 
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Figure 1: Geometry of tangent space. Here, a three-dimensional feature space 
contains the "current" prototype, Pc, and the subspace consisting of all patterns 
obtainable by performing continuous transformations of it (shaded). Two candidate 
prototypes and a test pattern, T, as well as their projections onto the T-space of 
Pc are shown. The insert (above) shows the progression of search through the 
corresponding portion of the recognition graph. The goal is to rapidly find the 
prototype closest to T (in the T-distance sense), and our algorithm (guided by the 
minimum angle OJ in the tangent space) finds that P 2 is so closer to T than are 
either PI or Pc (see text). 

Figure 1 illustrates geometry of tangent space and the relationships among the fun­
damental entities in our trained system. A labelled ("current") trained pattern is 
represented by Pc, and the (shaded) surface corresponds to patterns arising under 
continuous transformations of Pc. Such transformations might include rotation, 
translation, scaling, line thinning, etc. Following Simard et al. [1993], we approxi­
mate this surface in the vicinity of Pc by a subspace - the tangent space or T -space 
of Pc - which is spanned by "tangent" vectors, whose directions are determined by 
infinitessimally transforming the prototype Pc. The figure shows an ortho-normal 
basis {TVa, TV b}, which helps to speed search during classification, as we shall see. 
A test pattern T and two other (candidate) prototypes as well as their projections 
onto the T-space of Pc are shown. 
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3 THE ALGORITHMS 

Our overall approach includes constructing a graph (during learning), and searching 
it (for classification). The graph is constructed by the following algorithm: 

Graph construction 
Initialize N = # patterns; k = # nearest neighbors; t = # invariant transforma­

tions 

Begin Loop For each prototype Pi (i = 1 ~ N) 

• Compute a t-dimensional orthonormal basis for the T -space of Pi 
• Compute ("one-sided") T-distance of each of the N - 1 prototypes 

P j (j i- i) using Pi'S T-space 
• Represent Pj.l (the projection of P j onto the T-space of Pi) in the 

tangent orthonormal frame of Pi 
• Connect Pi to each of its k T-nearest neighbors, storing their associ­

ated normalized projections Ph 

End Loop 

During classification, our algorithm permits rapid search through prototypes. Thus 
in Figure 1, starting at Pc we seek to find another prototype (here, P2) that is 
closer to the test point T . After P2 is so chosen, it becomes the current pattern, 
and the search is extended using its T-space. Graph search ends when the closest 
prototype to T is found (Le., closest in a T-distance sense). 

We let D~ denote the current minimum tangent distance. Our search algorithm is: 

Graph search 
Input Test pattern T 

Initialize 

Do 

• Choose initial candidate prototype, Po 

• SetPc~Po 
• Set D~ ~ DT(Pc, T), i.e., the T-distance ofT from Pc 

T.L·P~ 
• For each prototype P j connected to Pc compute cos(Oj) = IT.Ll.L 

• Sort these prototypes by increasing values of OJ and put them into a 
candidate list 

• Pick P j from the top of the candidate list 
• In T-space of Pj, compute DT(Pj , T) 

If DT(P j , T) < D~ then Pc ~ P j and D~ ~ DT(P j , T) 
otherwise mark P j as a "failure" (F), and pick next prototype from 

the candidate list 

Until Candidate list empty 

Return D~ or the category label of the optimum prototype found 
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Figure 2: The search through the "2" category graph for the T-nearest stored 
prototype to the test pattern is shown (N = 720 and k = 15 nearest neighbors). 
The number of T-distance calculations is equal to the number of nodes visited plus 
the number offailures (marked F); Le., in the case shown 5 + 26 = 31. The backward 
search step attempt is thwarted because the middle node has already been visited 
(marked M). Notice in the prototypes how the search is first a downward shift, then 
a counter-clockwise rotation - a mere four steps through the graph. 

Figure 2 illustrates search through a network of "2" prototypes. Note how the T­
distance of the test pattern decreases, and that with only four steps through the 
graph the optimal prototype is found. 

There are several ways in which our search technique can be incorporated into a 
classifier. One is to store all prototypes, regardless of class, in a single large graph 
and perform the search; the test pattern is classified by the label of the optimal 
prototype found. Another, is to employ separate graphs, one for each category, and 
search through them (possibly in parallel); the test is classified by the minimum 
T-distance prototype found. The choice of method depends upon the hardware 
limitations, performance speed requirements, etc. Figure 3 illustrates such a search 
through a "2" category graph for the closest prototype to a test pattern "5." We 
report below results using a single graph per category, however. 

3.1 Computational complexity 

If a graph contains N prototypes with k pointers (arcs) each, and if the patterns are 
of dimension m, then the storage requirement is O(N((t + 1) . m2 + kt)). The time 
complexity of training depends upon details of ortho-normalization, sorting, etc., 
and is of little interest anyway. Construction is more than an order of magnitude 
faster than neural network training on similar problems; for instance construction 
of a graph for N = 720 prototypes and k = 100 nearest neighbors takes less than 
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Figure 3: The search through a "2" category graph given a "5" test pattern. Note 
how the search first tries to find a prototype that matches the upper arc of the 
"5," and then one possessing skew or rotation. For this test pattern, the minimum 
T-distance found for the "5" category (3.62) is smaller than the one found for the 
"2" category shown here (4.22), and indeed for any other category. Thus the test 
pattern is correctly classified as a "5." 

20 minutes on a Sparc 10. 

The crucial quantity of interest is the time complexity for search. This is, of course, 
problem related, and depends upon the number of categories, transformation and 
prototypes and their statistical properties (see next Section). Worst case analyses 
(e.g., it is theoretically conceivable that nearly all prototypes must be visited) are 
irrelevant to practice. 

We used a slightly non-obvious search criterion at each step, the function cos(Oj), 
as shown in Figure 1. Not only could this criterion be calculated very efficiently 
in our orthonormal basis (by using simple inner products), but it actually led to 
a slightly more accurate search than Euclidean distance in the T-space - perhaps 
the most natural choice of criterion. The angle OJ seems to guide the "flow" of the 
search along transformation directions toward the test point. 

4 Simulations and results 

We explored the search capabilities of our system on the binary handwritten digit 
database of Guyon, et al. [1991J. We needed to scale all patterns by a linear factor 
(0.833) to insure that rotated versions did not go outside the 16 x 16 pixel grid. As 
required in all T-space methods, the patterns must be continuous valued (Le., here 
grayscale); this was achieved by convolution with a spatially symmetric Gaussian 
having a = .55 pixels. We had 720 training examples in each of ten digit categories; 
the test set consisted of 1320 test patterns formed by transforming independent 
prototypes in all meaningful combinations of the t = 6 transformations (four spatial 
directions and two rotation senses). 

We compared the Euclidean sorting method of Simard et al. [1993J to our graph 
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Figure 4: Comparison of graph-based (heavy lines) and standard Euclidean sorting 
searches (thin lines). Search accuracy is the percentage of optimal prototypes found 
on the full test set of 1320 patterns in a single category (solid lines). The average 
search error is the per pattern difference between the global optimum T -distance and 
the one actually found, averaged over the non-optimal prototypes found through the 
search (dashed lines). Note especially that for the same computational complexity, 
our method has the same average error, but that this average is taken over a much 
smaller number of (non-optimal) prototypes. For a given criterion search accuracy, 
our method requires significantly less computation. For instance, if 90% of the 
prototypes must be found for a requisite categorization accuracy (a typical value 
for asymptotically high recognition accuracy), our graph-based method requires less 
than half the computation of the Euclidean sorting method. 

based method using the same data and transformations, over the full range of 
relevant computational complexities. Figure 4 summarizes our results. For our 
method, the computational complexity is adjusted by the number of neighbors 
inspected, k. For their Euclidean sorting method, it is adjusted by the percentage 
of Euclidean nearest neighbors that were then inspected for T -distance. We were 
quite careful to employ as many computational tricks and shortcuts on both methods 
we could think of. Our results reflect fairly on the full computational complexity, 
which was dominated by tangent and Euclidean distance calculations. 

We note parenthetically that many of the recognition errors for both methods could 
be explained by the fact that we did not include the transformation of line thinning 
(solely because we lacked the preprocessing capabilities); the overall accuracy of 
both methods will increase when this invariance is also included. 

5 CONCLUSIONS AND FUTURE WORK 

We have demonstrated a graph-based method using tangent distance that per­
mits search through prototypes significantly faster than the most popular current 
approach. Although not shown above, ours is also superior to other tree-based 
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methods, such as k-d-trees, which are less accurate. Since our primary concern was 
reducing the computational complexity of search (while matching Simard et al.'s 
accuracy), we have not optimized over preprocessing steps, such as the Gaussian 
kernel width or transformation set. We note again that our method can be applied 
to reduced training sets, for instance ones pruned by the method of Simard, Hastie 
& Saeckinger [1994]. Simard's [1994] recent method - in which low-resolution 
versions of training patterns are organized into a hierarchical data structure so 
as to reduce the number of multiply-accumulates required during search - is in 
some sense "orthogonal" to ours. Our graph-based method will work with his low­
resolution images too, and thus these two methods can be unified into a hybrid 
system. 

Perhaps most importantly, our work suggests a number of research avenues. We 
used just a single ("central") prototype Po to start search; presumably having 
several candidate starting points would be faster. Our general method may admit 
gradient descent learning of parameters of the search criterion. For instance, we can 
imagine scaling the different tangent basis vectors according to their relevance in 
guiding correct searches as determined using a validation set. Finally, our approach 
may admit elegant parallel implementations for real-world applications. 
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