
A Rapid Graph-based Method for
Arbitrary Transformation-Invariant

Pattern Classification

Alessandro Sperduti
Dipartimento di Informatica

U niversita di Pisa
Corso Italia 40

56125 Pisa, ITALY
perso~di.unipi.it

David G. Stork
Machine Learning and Perception Group

Ricoh California Research Center
2882 Sand Hill Road # 115

Menlo Park, CA USA 94025-7022
stork~crc.ricoh.com

Abstract

We present a graph-based method for rapid, accurate search
through prototypes for transformation-invariant pattern classifica­
tion. Our method has in theory the same recognition accuracy as
other recent methods based on ''tangent distance" [Simard et al.,
1994], since it uses the same categorization rule. Nevertheless ours
is significantly faster during classification because far fewer tan­
gent distances need be computed. Crucial to the success of our
system are 1) a novel graph architecture in which transformation
constraints and geometric relationships among prototypes are en­
coded during learning, and 2) an improved graph search criterion,
used during classification. These architectural insights are applica­
ble to a wide range of problem domains. Here we demonstrate that
on a handwriting recognition task, a basic implementation of our
system requires less than half the computation of the Euclidean
sorting method.

1 INTRODUCTION

In recent years, the crucial issue of incorporating invariances into networks for pat­
tern recognition has received increased attention, most especially due to the work of

666 Alessandro Sperduti, David G. Stork

Simard and his colleagues. To a regular hierachical backpropagation network Simard
et al. [1992] added a Jacobian network, which insured that directional derivatives
were also learned. Such derivatives represented directions in feature space corre­
sponding to the invariances of interest, such as rotation, translation, scaling and
even line thinning. On small training sets for a function approximation problem,
this hybrid network showed performance superior to that of a highly tuned back­
propagation network taken alone; however there was negligible improvement on
large sets. In order to find a simpler method applicable to real-world problems,
Simard, Le Cun & Denker [1993] later used a variation of the nearest neighbor
algorithm, one incorporating "tangent distance" (T-distance or DT) as the classifi­
cation metric - the smallest Euclidean distance between patterns after the optimal
transformation. In this way, state-of-the-art accuracy was achieved on an isolated
handwritten character task, though at quite high computational complexity, owing
to the inefficient search and large number of Euclidean and tangent distances that
had to be calculated.

Whereas Simard, Hastie & Saeckinger [1994] have recently sought to reduce this
complexity by means of pre-clustering stored prototypes, we here take a different
approach, one in which a (graph) data structure formed during learning contains
information about transformations and geometrical relations among prototypes.
Nevertheless, it should be noted that our method can be applied to a reduced
(clustered) training set such as they formed, yielding yet faster recognition. Simard
[1994] recently introduced a hierarchical structure of successively lower resolution
patterns, which speeds search only if a minority of patterns are classified more
accurately by using the tangent metric than by other metrics. In contrast, our
method shows significant improvement even if the majority or all of the patterns
are most accurately classified using the tangent distance.

Other methods seeking fast invariant classification include Wilensky and
Manukian's scheme [1994]. While quite rapid during recall, it is more properly
considered distortion (rather than coherent transformation) invariant. Moreover,
some transformations such as line thinning cannot be naturally incorporated into
their scheme. Finally, it appears as if their scheme scales poorly (compared to
tangent metric methods) as the number of invariances is increased.

It seems somewhat futile to try to improve significantly upon the recognition ac­
curacy of the tangent metric approach - for databases such as NIST isolated
handwritten characters, Simard et al. [1993] reported accuracies matching that
of humans! Nevertheless, there remains much that can be done to increase the
computational efficiency during recall. This is the problem we address.

2 TRANSFORMATION INVARIANCE

In broad overview, during learning our method constructs a labelled graph data
structure in which each node represents a stored prototype (labelled by its category)
as given by a training set, linked by arcs representing the T-distance between them.
Search through this graph (for classification) takes advantage of the graph structure
and an improved search criterion. To understand the underlying computations, we
must first consider tangent space.

Graph-Based Method for Arbitrary Transformation-Invariant Pattern Classification 667

Figure 1: Geometry of tangent space. Here, a three-dimensional feature space
contains the "current" prototype, Pc, and the subspace consisting of all patterns
obtainable by performing continuous transformations of it (shaded). Two candidate
prototypes and a test pattern, T, as well as their projections onto the T-space of
Pc are shown. The insert (above) shows the progression of search through the
corresponding portion of the recognition graph. The goal is to rapidly find the
prototype closest to T (in the T-distance sense), and our algorithm (guided by the
minimum angle OJ in the tangent space) finds that P 2 is so closer to T than are
either PI or Pc (see text).

Figure 1 illustrates geometry of tangent space and the relationships among the fun­
damental entities in our trained system. A labelled ("current") trained pattern is
represented by Pc, and the (shaded) surface corresponds to patterns arising under
continuous transformations of Pc. Such transformations might include rotation,
translation, scaling, line thinning, etc. Following Simard et al. [1993], we approxi­
mate this surface in the vicinity of Pc by a subspace - the tangent space or T -space
of Pc - which is spanned by "tangent" vectors, whose directions are determined by
infinitessimally transforming the prototype Pc. The figure shows an ortho-normal
basis {TVa, TV b}, which helps to speed search during classification, as we shall see.
A test pattern T and two other (candidate) prototypes as well as their projections
onto the T-space of Pc are shown.

668 Alessandro Sperduti, David G. Stork

3 THE ALGORITHMS

Our overall approach includes constructing a graph (during learning), and searching
it (for classification). The graph is constructed by the following algorithm:

Graph construction
Initialize N = # patterns; k = # nearest neighbors; t = # invariant transforma­

tions

Begin Loop For each prototype Pi (i = 1 ~ N)

• Compute a t-dimensional orthonormal basis for the T -space of Pi
• Compute ("one-sided") T-distance of each of the N - 1 prototypes

P j (j i- i) using Pi'S T-space
• Represent Pj.l (the projection of P j onto the T-space of Pi) in the

tangent orthonormal frame of Pi
• Connect Pi to each of its k T-nearest neighbors, storing their associ­

ated normalized projections Ph

End Loop

During classification, our algorithm permits rapid search through prototypes. Thus
in Figure 1, starting at Pc we seek to find another prototype (here, P2) that is
closer to the test point T . After P2 is so chosen, it becomes the current pattern,
and the search is extended using its T-space. Graph search ends when the closest
prototype to T is found (Le., closest in a T-distance sense).

We let D~ denote the current minimum tangent distance. Our search algorithm is:

Graph search
Input Test pattern T

Initialize

Do

• Choose initial candidate prototype, Po

• SetPc~Po
• Set D~ ~ DT(Pc, T), i.e., the T-distance ofT from Pc

T.L·P~
• For each prototype P j connected to Pc compute cos(Oj) = IT.Ll.L

• Sort these prototypes by increasing values of OJ and put them into a
candidate list

• Pick P j from the top of the candidate list
• In T-space of Pj, compute DT(Pj , T)

If DT(P j , T) < D~ then Pc ~ P j and D~ ~ DT(P j , T)
otherwise mark P j as a "failure" (F), and pick next prototype from

the candidate list

Until Candidate list empty

Return D~ or the category label of the optimum prototype found

Graph-Based Method for Arbitrary Transformation-Invariant Pattern Classification 669

Dr 4.91 3.70 3.61 3.03 2.94

Figure 2: The search through the "2" category graph for the T-nearest stored
prototype to the test pattern is shown (N = 720 and k = 15 nearest neighbors).
The number of T-distance calculations is equal to the number of nodes visited plus
the number offailures (marked F); Le., in the case shown 5 + 26 = 31. The backward
search step attempt is thwarted because the middle node has already been visited
(marked M). Notice in the prototypes how the search is first a downward shift, then
a counter-clockwise rotation - a mere four steps through the graph.

Figure 2 illustrates search through a network of "2" prototypes. Note how the T­
distance of the test pattern decreases, and that with only four steps through the
graph the optimal prototype is found.

There are several ways in which our search technique can be incorporated into a
classifier. One is to store all prototypes, regardless of class, in a single large graph
and perform the search; the test pattern is classified by the label of the optimal
prototype found. Another, is to employ separate graphs, one for each category, and
search through them (possibly in parallel); the test is classified by the minimum
T-distance prototype found. The choice of method depends upon the hardware
limitations, performance speed requirements, etc. Figure 3 illustrates such a search
through a "2" category graph for the closest prototype to a test pattern "5." We
report below results using a single graph per category, however.

3.1 Computational complexity

If a graph contains N prototypes with k pointers (arcs) each, and if the patterns are
of dimension m, then the storage requirement is O(N((t + 1) . m2 + kt)). The time
complexity of training depends upon details of ortho-normalization, sorting, etc.,
and is of little interest anyway. Construction is more than an order of magnitude
faster than neural network training on similar problems; for instance construction
of a graph for N = 720 prototypes and k = 100 nearest neighbors takes less than

670 Alessandro Sperduti, David G. Stork

[ZJ[ZJ[2J[2]
Dr 5.10 5.09 5.01 4.93

4.90

Figure 3: The search through a "2" category graph given a "5" test pattern. Note
how the search first tries to find a prototype that matches the upper arc of the
"5," and then one possessing skew or rotation. For this test pattern, the minimum
T-distance found for the "5" category (3.62) is smaller than the one found for the
"2" category shown here (4.22), and indeed for any other category. Thus the test
pattern is correctly classified as a "5."

20 minutes on a Sparc 10.

The crucial quantity of interest is the time complexity for search. This is, of course,
problem related, and depends upon the number of categories, transformation and
prototypes and their statistical properties (see next Section). Worst case analyses
(e.g., it is theoretically conceivable that nearly all prototypes must be visited) are
irrelevant to practice.

We used a slightly non-obvious search criterion at each step, the function cos(Oj),
as shown in Figure 1. Not only could this criterion be calculated very efficiently
in our orthonormal basis (by using simple inner products), but it actually led to
a slightly more accurate search than Euclidean distance in the T-space - perhaps
the most natural choice of criterion. The angle OJ seems to guide the "flow" of the
search along transformation directions toward the test point.

4 Simulations and results

We explored the search capabilities of our system on the binary handwritten digit
database of Guyon, et al. [1991J. We needed to scale all patterns by a linear factor
(0.833) to insure that rotated versions did not go outside the 16 x 16 pixel grid. As
required in all T-space methods, the patterns must be continuous valued (Le., here
grayscale); this was achieved by convolution with a spatially symmetric Gaussian
having a = .55 pixels. We had 720 training examples in each of ten digit categories;
the test set consisted of 1320 test patterns formed by transforming independent
prototypes in all meaningful combinations of the t = 6 transformations (four spatial
directions and two rotation senses).

We compared the Euclidean sorting method of Simard et al. [1993J to our graph

Graph-Based Method for Arbitrary Transformation-Invariant Pattern Classification 671

1.00 ______ -----:::::::::::::==---10. 6

... '
',-. error

- ---~. " .. - --

§
0.4 u

.c
~ u
'"
~

0.2 e
~

o 0
50 100 150 200 250 300 350 400

Computational complexity
(equivalent number of T -distance calculations)

Figure 4: Comparison of graph-based (heavy lines) and standard Euclidean sorting
searches (thin lines). Search accuracy is the percentage of optimal prototypes found
on the full test set of 1320 patterns in a single category (solid lines). The average
search error is the per pattern difference between the global optimum T -distance and
the one actually found, averaged over the non-optimal prototypes found through the
search (dashed lines). Note especially that for the same computational complexity,
our method has the same average error, but that this average is taken over a much
smaller number of (non-optimal) prototypes. For a given criterion search accuracy,
our method requires significantly less computation. For instance, if 90% of the
prototypes must be found for a requisite categorization accuracy (a typical value
for asymptotically high recognition accuracy), our graph-based method requires less
than half the computation of the Euclidean sorting method.

based method using the same data and transformations, over the full range of
relevant computational complexities. Figure 4 summarizes our results. For our
method, the computational complexity is adjusted by the number of neighbors
inspected, k. For their Euclidean sorting method, it is adjusted by the percentage
of Euclidean nearest neighbors that were then inspected for T -distance. We were
quite careful to employ as many computational tricks and shortcuts on both methods
we could think of. Our results reflect fairly on the full computational complexity,
which was dominated by tangent and Euclidean distance calculations.

We note parenthetically that many of the recognition errors for both methods could
be explained by the fact that we did not include the transformation of line thinning
(solely because we lacked the preprocessing capabilities); the overall accuracy of
both methods will increase when this invariance is also included.

5 CONCLUSIONS AND FUTURE WORK

We have demonstrated a graph-based method using tangent distance that per­
mits search through prototypes significantly faster than the most popular current
approach. Although not shown above, ours is also superior to other tree-based

672 Alessandro Sperduli. David G. Stork

methods, such as k-d-trees, which are less accurate. Since our primary concern was
reducing the computational complexity of search (while matching Simard et al.'s
accuracy), we have not optimized over preprocessing steps, such as the Gaussian
kernel width or transformation set. We note again that our method can be applied
to reduced training sets, for instance ones pruned by the method of Simard, Hastie
& Saeckinger [1994]. Simard's [1994] recent method - in which low-resolution
versions of training patterns are organized into a hierarchical data structure so
as to reduce the number of multiply-accumulates required during search - is in
some sense "orthogonal" to ours. Our graph-based method will work with his low­
resolution images too, and thus these two methods can be unified into a hybrid
system.

Perhaps most importantly, our work suggests a number of research avenues. We
used just a single ("central") prototype Po to start search; presumably having
several candidate starting points would be faster. Our general method may admit
gradient descent learning of parameters of the search criterion. For instance, we can
imagine scaling the different tangent basis vectors according to their relevance in
guiding correct searches as determined using a validation set. Finally, our approach
may admit elegant parallel implementations for real-world applications.

Acknowledgements

This work was begun during a visit by Dr. Sperduti to Ricoh CRC. We thank I.
Guyon for the use of her database of handwritten digits and Dr. K. V. Prasad for
assistance in image processing.

References

1. Guyon, P. Albrecht, Y. Le Cun, J. Denker & W. Hubbard. (1991) "Comparing
different neural network architectures for classifying handwritten digits," Proc. of
the Inter. Joint Conference on Neural Networks, vol. II, pp. 127-132, IEEE Press.

P. Simard. (1994) "Efficient computation of complex distance metrics using hierar­
chical filtering," in J. D. Cowan, G. Tesauro and J. Alspector (eds.) Advances in
Neural Information Processing Systems-6 Morgan Kaufmann pp. 168-175.

P. Simard, B. Victorrio, Y. Le Cun & J. Denker. (1992) "Tangent Prop - A formal­
ism for specifying selected invariances in an adaptive network," in J. E. Moody, S.
J . Hanson and R. P. Lippmann (eds.) Advances in Neural Information Processing
Systems-4 Morgan Kaufmann pp. 895-903.

P. Y. Simard, Y. Le Cun & J. Denker. (1993) "Efficient Pattern Recognition Using
a New Transformation Distance," in S. J. Hanson, J. D. Cowan and C. L. Giles
(eds.) Advances in Neural Information Processing Systems-5 Morgan Kaufmann
pp.50-58.

P. Y. Simard, T. Hastie & E. Saeckinger. (1994) "Learning Prototype Models for
Tangent Distance," Neural Networks for Computing Snowbird, UT (April, 1994).

G. D. Wilensky & N. Manukian. (1994) "Nearest Neighbor Networks: New Neural
Architectures for Distortion-Insensitive Image Recognition," Neural Networks for
Computing Snowbird, UT (April, 1994).

