
Generalization in Reinforcement Learning: 
Safely Approximating the Value Function 

Justin A. Boyan and Andrew W. Moore 
Computer Science Department 

Carnegie Mellon University 
Pittsburgh, PA 15213 

jab@cs.cmu.edu, awm@cs.cmu.edu 

Abstract 
A straightforward approach to the curse of dimensionality in re­
inforcement learning and dynamic programming is to replace the 
lookup table with a generalizing function approximator such as a neu­
ral net. Although this has been successful in the domain of backgam­
mon, there is no guarantee of convergence. In this paper, we show 
that the combination of dynamic programming and function approx­
imation is not robust, and in even very benign cases, may produce 
an entirely wrong policy. We then introduce Grow-Support, a new 
algorithm which is safe from divergence yet can still reap the benefits 
of successful generalization . 

1 INTRODUCTION 
Reinforcement learning-the problem of getting an agent to learn to act from sparse, 
delayed rewards-has been advanced by techniques based on dynamic programming 
(DP). These algorithms compute a value function which gives, for each state, the min­
imum possible long-term cost commencing in that state. For the high-dimensional 
and continuous state spaces characteristic of real-world control tasks, a discrete repre­
sentation of the value function is intractable; some form of generalization is required. 

A natural way to incorporate generalization into DP is to use a function approximator, 
rather than a lookup table, to represent the value function. This approach, which 
dates back to uses of Legendre polynomials in DP [Bellman et al., 19631, has recently 
worked well on several dynamic control problems [Mahadevan and Connell, 1990, Lin, 
1993] and succeeded spectacularly on the game of backgammon [Tesauro, 1992, Boyan, 
1992]. On the other hand, many sensible implementations have been less successful 
[Bradtke, 1993, Schraudolph et al., 1994]. Indeed, given the well-established success 



370 Justin Boyan, Andrew W. Moore 

on backgammon, the absence of similarly impressive results appearing for other games 
is perhaps an indication that using function approximation in reinforcement learning 
does not always work well. 

In this paper, we demonstrate that the straightforward substitution of function ap­
proximators for lookup tables in DP is not robust and, even in very benign cases, may 
diverge, resulting in an entirely wrong control policy. We then present Grow-Support, 
a new algorithm designed to converge robustly. Grow-Support grows a collection of 
states over which function approximation is stable. One-step backups based on Bell­
man error are not used; instead, values are assigned by performing "rollouts" -explicit 
simulations with a greedy policy. We discuss potential computational advantages of 
this method and demonstrate its success on some example problems for which the 
conventional DP algorithm fails. 

2 DISCRETE AND SMOOTH VALUE ITERATION 
Many popular reinforcement learning algorithms, including Q-Iearning and TD(O), 
are based on the dynamic programmin~ algorithm known as value iteration [Watkins, 
1989, Sutton, 1988, Barto et al., 1989J, which for clarity we will call discrete value 
iteration. Discrete value iteration takes as input a complete model of the world as a 
Markov Decision Task, and computes the optimal value function J*: 

J* (x) = the minimum possible sum of future costs starting from x 

To assure that J* is well-defined, we assume here that costs are nonnegative and that 
some absorbing goal state-with all future costs O-is reachable from every state. For 
simplicity we also assume that state transitions are deterministic. Note that J* and 
the world model together specify a "greedy" policy which is optimal for the domain: 

optimal action from state x = argmin(CosT(x, a) + J*(NEXT-STATE(X, a))) 
aEA 

We now consider extending discrete value iteration to the continuous case: we replace 
the lookup table over all states with a function approximator trained over a sample of 
states. The smooth value iteration algorithm is given in the appendix. Convergence 
is no longer guaranteed; we instead recognize four possible classes of behavior: 

good convergence The function approximator accurately represents the interme-
diate value functions at each iteration (that is, after m iterations, the value 
function correctly represents the cost of the cheapest m-step path), and suc­
cessfully converges to the optimal J* value function. 

lucky convergence The function approximator does not accurately represent the 
intermediate value functions at each iteration; nevertheless, the algorithm 
manages to converge to a value function whose greedy policy is optimal. 

bad convergence The algorithm converges, i.e. the target J-values for the N train­
ing points stop changing, but the resulting value function and policy are 
poor. 

divergence Worst of all: small fitter errors may become magnified from one iteration 
to the next, resulting in a value function which never stops changing. 

The hope is that the intermediate value functions will be smooth and we will achieve 
"good convergence." Unfortunately, our experiments have generated all four of these 
behaviors-and the divergent behavior occurs frequently, even for quite simple prob­
lems. 



Generalization in Reinforcement Learning: Safely Approximating the Value Function 37 J 

2.1 DIVERGENCE IN SMOOTH VALUE ITERATION 

We have run simulations in a variety of domains-including a continuous gridworld, 
a car-on-the-hill problem with nonlinear dynamics, and tic-tac-toe versus a stochas­
tic opponent-and using a variety of function approximators, including polynomial 
regression, backpropagation, and local weighted regression. In our experiments, none 
of these function approximators was immune from divergence. 

The first set ofresults is from the 2-D continuous gridworld, described in Figure 1. 
By quantizing the state space into a 100 x 100 grid, we can compute J* with discrete 
value iteration, as shown in Figure 2. The optimal value function is exactly linear: 
J*(x, y) = 20 - lOx - lOy. 

Since J* is linear, one would hope smooth value iteration could converge to it with a 
function approximator as simple as linear or quadratic regression. However, the in­
termediate value functions of Figure 2 are not smooth and cannot be fit accurately by 
a low-order polynomial. Using linear regression on a sample of 256 randomly-chosen 
states, smooth value iteration took over 500 iterations before "luckily" converging to 
optimal. Quadratic regression, though it always produces a smaller fit error than lin­
ear regression, did not converge (Figure 3). The quadratic function, in trying to both 
be flat in the middle of state space and bend down toward 0 at the goal corner, must 
compensate by underestimating the values at the corner opposite the goal. These 
underestimates then enlarge on each iteration, as the one-step DP lookaheads erro­
neously indicate that points can lower their expected cost-to-go by stepping farther 
away from the goal. The resulting policy is anti-optimal. 

fontinuous Gridworld 

0.8 

0.6 
>. 

0.4 

0.2 

0L-0~.~2-0~.~4-0~.~6~0~.~8~1 
x 

J*(x,y) 

Figure 1: In the continuous gridworld domain, the state is a point (x, y) E [0,1]2. There are 
four actions corresponding to short steps (length 0.05, cost 0.5) in each compass direction, 
and the goal region is the upper right-hand corner. l*(x, y) is linear. 

Iteration 12 Iteration 25 Iteration 40 

.8 

1 

Figure 2: Computation of 1* by discrete value iteration 



372 Justin Boyan, Andrew W. Moore 

Iteration 17 Iteration 43 Iteration 127 

1 

. 8 .8 .8 

1 
Figure 3: Divergence of smooth value iteration with quadratic regression (note z-axis). 

J*(x , y) Iteration 144 

o. 

o. 
>. 

o. 
.8 

o. 

0.20 . 40.60 . 8 1 
x 1 

Figure 4: The 2-D continuous gridworld with puddles, its optimal value function, and a 
diverging approximation of the value function by Local Weighted Regression (note z-axis). 

car-on-the-Hill J* (pa s, vel) 

0.5 

pas 

Figure 5: The car-on-the-hill domain. When the velocity is below a threshold, the car must 
reverse up the left hill to gain enough speed to reach the goal, so r is discontinuous. 

Iteration 11 Iteration 101 Iteration 201 

Figure 6: Divergeri'ce oYsmooth value iteration wit~' for car-on-th~~hill~ The 
neural net, a 2-layer MLP with 80 hidden units, was trained for 2000 epochs per iteration. 

It may seem as though the divergence of smooth value iteration shown above can be 
attributed to the global nature of polynomial regression. In fact, when the domain 
is made slightly less trivial, the same types of instabilities appear with even a highly 



Generalization in Reinforcement Learning: Safely Approximating the Value Function 373 

Table 1: Summary of convergence results: Smooth value iteration 

Domain Linear Quadratic LWR Backprop 
2-D grid world lucky diverge good lucky 
2-D puddle world - - diverge diverge 
Car-on-the-hill - - good diverge 

local memory-based function approximator such as local weighted regression (LWR) 
[Cleveland and Delvin, 1988]. Figure 4 shows the continuous gridworld augmented 
to include two oval "puddles" through which it is costly to step. Although LWR can 
fit the corresponding J* function nearly perfectly, smooth value iteration with LWR 
nonetheless reliably diverges. On another two-dimensional domain, the car-on-the-hill 
(Figure 5), smooth value iteration with LWR did converge, but a neural net trained 
by backpropagation did not (see Figure 6) . Table 1 summarizes our results . 

In light of such experiments, we conclude that the straightforward combination of 
DP and function approximation is not robust. A general-purpose learning method 
will require either using a function approximator constrained to be robust during DP 
[Yee, 1992], or an algorithm which explicitly prevents divergence even in the face of 
imperfect function approximation, such as the Grow-Support algorithm we present 
in Section 3. 

2.2 RELATED WORK 
Theoretically, it is not surprising that inserting a smoothing process into a recursive 
DP procedure can lead to trouble. In [Thrun and Schwartz, 1993] one case is analyzed 
with the assumption that errors due to function approximation bias are independently 
distributed. Another area of theoretical analysis concerns inadequately approximated 
J* functions. In [Singh and Yee, 1994] and [Williams, 1993] bounds are derived for the 
maximum reduction in optimality that can be produced by a given error in function 
approximation. If a basis function approximator is used, then the reduction can be 
large [Sabes, 1993]. These results assume generalization from a dataset containing 
true optimal values; the true reinforcement learning scenario is even harder because 
each iteration of DP requires its own function approximation. 

3 THE GROW-SUPPORT ALGORITHM 
The Grow-Support algorithm is designed to construct the optimal value function with 
a generalizing function approximator while being robust and stable. It recognizes that 
function approximators cannot always be relied upon to fit the intermediate value 
functions produced by DP. Instead, it assumes only that the function approximator 
can represent the final J* function accurately. The specific principles of Grow-Support 
are these: 

1. We maintain a "support" set of states whose final J* values have been com­
puted, starting with goal states, and growing this set out from the goal. The 
fitter is trained only on these values, which we assume it is capable of fitting. 

2. Instead of propagating values by one-step DP backups, we use simulations 
with the current greedy policy, called "rollouts". They explicitly verify the 
achievability of a state's cost-to-go estimate before adding that state to the 



374 Justin Boyan, Andrew W. Moore 

support. In a rollout, the J values are derived from costs of actual paths to the 
goal, not from the values of the previous iteration's function approximation. 
This prevents divergence . 

3. We take maximum advantage of generalization. Each iteration, we add to 
the support set any sample state which can, by executing a single action, 
reach a state that passes the rollout test. In a discrete environment, this 
would cause the support set to expand in one-step concentric "shells" back 
from the goal. But in our continuous case, the function approximator may 
be able to extrapolate correctly well beyond the support region-and when 
this happens, we can add many points to the support set at once. This leads 
to the very desirable behavior that the support set grows in big jumps in 
regions where the value function is smooth. 

Iteration 1, I Support I =4 Iteration 2, 1 Support 1=12 Iteration 3, ISupportl=256 

Figure 7: Grow-Support with quadratic regression on the gridworld. (Compare Figure 3.) 

Iteration 1, I Support I =3 Iteration 2, ISupportl=213 Iteration 5, ISupportl=253 

Figure 8: Grow-Support with LWR on the two-puddle gridworld. (Compare Figure 4.) 

Iteration 3, I Support I =79 Iteration 8, ISupportl=134 Iteration 14, ISupportl=206 

3 

O. 2 O. -2 o. 
Figure 9: Grow-Support with backprop on car-on-the-hill. (Compare Figure 6.) 

The algorithm, again restricted to the deterministic case for simplicity, is outlined in 
the appendix. In Figures 7-9, we illustrate its convergence on the same combinations 
of domain and function approximator which caused smooth value iteration to diverge. 
In Figure 8, all but three points are added to the support within only five iterations, 



Generalization in Reinforcement Learning: Safely Approximating the Value Function 375 

and the resulting greedy policy is optimal. In Figure 9, after 14 iterations, the algo­
rithm terminates. Although 50 states near the discontinuity were not added to the 
support set, the resulting policy is optimal within the support set. Grow-support 
converged to a near-optimal policy for all the problems and fitters in Table 1. 

The Grow-Support algorithm is more robust than value iteration. Empirically, it was 
also seen to be no more computationally expensive (and often much cheaper) despite 
the overhead of performing rollouts. Reasons for this are (1) the rollout test is not 
expensive; (2) once a state has been added to the support, its value is fixed and it 
needs no more computation; and most importantly, (3) the aggressive exploitation 
of generalization enables the algorithm to converge in very few iterations. However, 
with a nondeterministic problem, where multiple rollouts are required to assess the 
accuracy of a prediction, Grow-Support would become more expensive. 

It is easy to prove that Grow-Support will always terminate after a finite number 
of iterations. If the function approximator is inadequate for representing the J* 
function, Grow-Support may terminate before adding all sample states to the support 
set. When this happens, we then know exactly which of the sample states are having 
trouble and which have been learned. This suggests potential schemes for adaptively 
adding sample states to the support in problematic regions. Investigation of these 
ideas is in progress. 

In conclusion, we have demonstrated that dynamic programming methods may di­
verge when their tables are replaced by generalizing function approximators. Our 
Grow-Support algorithm uses rollouts, rather than one-step backups, to assign train­
ing values and to keep inaccurate states out of the training set . We believe these 
principles will contribute substantially to producing practical, robust, reinforcement 
learning. 

Acknowledgements 
We thank Scott Fahlman, Geoff Gordon, Mary Lee, Michael Littman and Marc Ringuette for 
their suggestions, and the NDSEG fellowship and NSF Grant IRI-9214873 for their support. 

APPENDIX: ALGORITHMS 

Smooth Value Iteration(X, G, A, NEXT-STATE, COST, FITJ): 
Given: _ a finite collection of states X = {Xl, X2, .. . XN} sampled from the 

iter := 0 

continuous state space X C fRn , and goal region G C X 
_ a finite set of allowable actions A 
_ a deterministic transition function NEXT-STATE: X x A -+ X 
_ the I-step cost function COST: X x A -+ fR 
_ a smoothing function approximator FIT J 

]<0) [i] := 0 Vi = 1 ... N {X ·(iter) [1] } 
repeat I t-+ J 

!rain ~ITJ(iter) to approximate the training set: : 
Iter .:= Iter + 1; XN t-+ /iter)[N] 
for ~ := 1 ... N do 

.(iter) [.] ._ { 0 . 
J 1.- minaEA (COST(Xi,a) + FITJ(lter-I)(NEXT-STATE(xi,a))) 

until j array stops changing 

if Xi E G 
otherwise 



376 Justin Boyan, Andrew W. Moore 

subroutine RoIloutCost(x, J): 
Starting from state x , follow the greedy policy defined by value function J until 

either reaching the goal, or exceeding a total path cost of J(x) + £. Then return: 
--t the actual total cost of the path, if goal is reached from x with cost ~ J(x) + e 
--t 00, if goal is not reached in cost J(x) + £. 

Grow-Support(X,G,A, NEXT-STATE, COST, FITJ): 
Given: • exactly the same inputs as Smooth Value Iteration. 

SUPPORT := {(Xi t-+ 0) I Xi E G} 
repeat 

Train FIT J to approximate the training set SUPPORT 
for each Xi ~ SUPPORT do 

c := minaEA [COsT(xi,a) + RolloutCost(NEXT-STATE(Xi, a), FITJ)] 
if c < 00 then 

add (Xi t-+ c) to the training set SUPPORT 
until SUPPORT stops growing or includes all sample points. 

References 
[Barto et al., 1989] A . Barto, R. Sutton, and C . Watkins . Learning and sequential decision making. Tech­

nical Report COINS 89-95, Univ. of Massachusetts, 1989 . 

[Bellman et al., 1963] R . Bellman, R . Kalaba, and B . Kotkin. Polynomial approximation-a new compu­
tational technique in dynamic programming: Allocation processes . Mathematics of Computation, 17, 
1963. 

[Boyan , 1992] J. A . Boyan. Modular neural networks for learning context-dependent game strategies . 
Master's thesis , Cambridge University, 1992. 

[Bradtke, 1993] S. J. Bradtke. Reinforcement learning applied to linear quadratic regulation. In S. J . 
Hanson, J . Cowan, and C . L . Giles, editors, NIPS-5. Morgan Kaufmann, 1993. 

[Cleveland and Delvin, 1988] W . S. Cleveland and S. J. Delvin. Locally weighted regression : An approach 
to regression analysis by local fitting. JASA , 83(403):596-610, September 1988. 

[Lin, 1993] L.-J . Lin . Reinforcement Learning for Robots Using Neural Networks. PhD thesis, Carnegie 
Mellon University, 1993. 

[Mahadevan and Connell , 1990] S. Mahadevan and J. Connell . Automatic programming of behavior-based 
robots using reinforcement learning. Technical report, IBM T. J . Watson Research Center, NY 10598, 
1990 . 

[Sabes, 1993] P. Sabes . Approximating Q-values with basis function represent ations. In Proceedings of 
the Fourth Connectionist Models Summer School, 1993. 

[Schraudolph et al., 1994] N . Schraudolph, P . Dayan, and T. Sejnowski . Using TD(>.) to learn an eval­
uation function for the game of Go . In J. D. Cowan, G . Tesauro , and J . Alspector, editors, NIPS-6. 
Morgan Kaufmann, 1994. 

[Singh and Yee, 1994] S. P. Singh and R. Yee. An upper bound on the loss from approximate optimal-value 
functions . Machine Learning, 1994. Technical Note (to appear) . 

[Sutton, 1988] R . Sutton . Learning to predict by the methods of temporal differences. Machine Learning, 
3,1988. 

[Tesauro, 1992] G. Tesauro. Practical issues in temporal difference learning. Machine Learning, 8(3/4), 
May 1992. 

[Thrun and Schwartz, 1993] S. Thrun and A. Schwartz. Issues in using function approximation for rein­
forcement learning. In Proceedings of the Fourth Connectionist Models Summer School, 1993. 

[Watkins, 1989] C . Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge University, 1989 . 

[Williams, 1993] R. Williams . Tight performance bounds on greedy policies based on imperfect value 
functions . Technical Report NU-CCS-93-13, Northeastern University, 1993. 

[Yee, 1992] R . Yee. Abstraction in control learning. Technical Report COINS 92-16 , Univ. of Mas­
sachusetts, 1992. 


