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Abstract 

If data collection is costly, there is much to be gained by actively se­
lecting particularly informative data points in a sequential way. In 
a Bayesian decision-theoretic framework we develop a query selec­
tion criterion which explicitly takes into account the intended use 
of the model predictions. By Markov Chain Monte Carlo methods 
the necessary quantities can be approximated to a desired preci­
sion. As the number of data points grows, the model complexity 
is modified by a Bayesian model selection strategy. The proper­
ties of two versions of the criterion ate demonstrated in numerical 
experiments. 

1 INTRODUCTION 

In this paper we consider the situation where data collection is costly, as when 
for example, real measurements or technical experiments have to be performed. In 
this situation the approach of query learning ('active data selection', 'sequential 
experimental design', etc.) has a potential benefit. Depending on the previously 
seen examples, a new input value ('query') is selected in a systematic way and 
the corresponding output is obtained. The motivation for query learning is that 
random examples often contain redundant information, and the concentration on 
non-redundant examples must necessarily improve generalization performance. 

We use a Bayesian decision-theoretic framework to derive a criterion for query con­
struction. The criterion reflects the intended use of the predictions by an appropriate 
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loss function. We limit our analysis to the selection of the next data point, given a 
set of data already sampled. The proposed procedure derives the expected loss for 
candidate inputs and selects a query with minimal expected loss. 

There are several published surveys of query construction methods [Ford et al. 89, 
Plutowski White 93, Sollich 94]. Most current approaches, e.g. [Cohn 94], rely 
on the information matrix of parameters. Then however, all parameters receive 
equal attention regardless of their influence on the intended use of the model 
[Pronzato Walter 92]. In addition, the estimates are valid only asymptotically. Baye­
sian approaches have been advocated by [Berger 80], and applied to neural networks 
[MacKay 92]. In [Sollich Saad 95] their relation to maximum information gain is 
discussed. In this paper we show that by using Markov Chain Monte Carlo me­
thods it is possible to determine all quantities necessary for the selection of a query. 
This approach is valid in small sample situations, and the procedure's precision can 
be increased with additional computational effort. With the square loss function, 
the criterion is reduced to a variant of the familiar integrated mean square error 
[Plutowski White 93]. 

In the next section we develop the query selection criterion from a decision-theoretic 
point of view. In the third section we show how the criterion can be calculated using 
Markov Chain Monte Carlo methods and we discuss a strategy for model selection. 
In the last section, the results of two experiments with MLPs are described. 

2 A DECISION-THEORETIC FRAMEWORK 

Assume we have an input vector x and a scalar output y distributed as y "" p(y I x, w) 
where w is a vector of parameters. The conditional expected value is a deterministic 
function !(x, w) := E(y I x, w) where y = !(x, w)+£ and £ is a zero mean error term. 
Suppose we have iteratively collected observations D(n) := ((Xl, iii), .. . , (Xn, Yn)). 
We get the Bayesian posterior p(w I D(n)) = p(D(n) I w) p(w)/ J p(D(n) I w) p(w) dw 
and the predictive distribution p(y I x, D(n)) = J p(y I x, w)p(w I D(n)) dw if p(w) is 
the prior distribution. 

We consider the situation where, based on some data x, we have to perform an 
action a whose result depends on the unknown output y. Some decisions may have 
more severe effects than others. The loss function L(y, a) E [0,00) measures the 
loss if y is the true value and we have taken the action a E A. In this paper we 
consider real-valued actions, e.g. setting the temperature a in a chemical process. 
We have to select an a E A only knowing the input x. According to the Bayes 
Principle [Berger 80, p.14] we should follow a decision rule d : x --t a such that 
the average risk J R(w, d) p(w I D(n)) dw is minimal, where the risk is defined as 
R(w, d) := J L(y, d(x)) p(y I x, w) p(x) dydx. Here p(x) is the distribution of future 
inputs, which is assumed to be known. 

For the square loss function L(y, a) = (y - a)2, the conditional expectation 
d(x) := E(y I x, D(n)) is the optimal decision rule. In a control problem the loss 
may be larger at specific critical points. This can be addressed with a weigh­
ted square loss function L(y, a) := h(y)(y - a)2, where h(y) 2: a [Berger 80, 
p.1U]. The expected loss for an action is J(y - a)2h(y) p(y I x, D(n)) dy. Re­
placing the predictive density p(y I x, D(n)) with the weighted predictive density 
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p(y I x, Den) := h(y) p(y I x, Den)/G(x), where G(x) := I h(y) p(y I x, Den) dy, 
we get the optimal decision rule d(x) := I yp(y I x, Den) dy and the average loss 
G(x) I(y - E(y I x, D(n))2 p(y I x, Den) dy for a given input x. With these modi­
fications, all later derIvations for the square loss function may be applied to the 
weighted square loss. 

The aim of query sampling is the selection of a new observation x in such a way 
that the average risk will be maximally reduced. Together with its still unknown 
y-value, x defines a new observation (x, y) and new data Den) U (x, y). To determine 
this risk for some given x we have to perform the following conceptual steps for a 
candidate query x: 

1. Future Data: Construct the possible sets of 'future' observations Den) U 

(x, y), where y ""' p(y I x, Den). 
2. Future posterior: Determine a 'future' posterior distribution of parameters 

p(w I Den) U (x, y» that depends on y in the same way as though it had 
actually been observed. 

3. Future Loss: Assuming d~,x(x) is the optimal decision rule for given values 
of x, y, and x, compute the resulting loss as 

1';,x(x):= J L(y,d;,x(x»p(ylx,w)p(wIDen)U(x,y»dydw (1) 

4. Averaging: Integrate this quantity over the future trial inputs x distributed 
as p(x) and the different possible future outputs y, yielding 
1';:= Ir;,x(x)p(x)p(ylx,Den)dxdy. 

This procedure is repeated until an x with minimal average risk is found. Since local 
optima are typical, a global optimization method is required. Subsequently we then 
try to determine whether the current model is still adequate or whether we have to 
increase its complexity (e.g. by adding more hidden units). 

3 COMPUTATIONAL PROCEDURE 

Let us assume that the real data Den) was generated according to a regression model 
y = !(x, w)+{ with i.i.d. Gaussian noise {""' N(O, (T2(w». For example !(x, w) may 
be a multilayer perceptron or a radial basis function network. Since the error terms 
are independent, the posterior density is p( w I Den) ex: p( w) rr~=l P(Yi I Xi, w) even 
in the case of query sampling [Ford et al. 89]. 

As the analytic derivation of the posterior is infeasible except in trivial cases, we 
have to use approximations. One approach is to employ a normal approximation 
[MacKay 92], but this is unreliable if the number of observations is small compa­
red to the number of parameters. We use Markov Chain Monte Carlo procedures 
[PaaB 91, Neal 93] to generate a sample WeB) := {WI, .. . WB} of parameters distri­
buted according to p( w I Den). If the number of sampling steps approaches infinity, 
the distribution of the simulated Wb approximates the posterior arbitrarily well. 

To take into account the range of future y-values, we create a set of them by si­
mulation. For each Wb E WeB) a number of y ""' p(y I x, Wb) is generated. Let 
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y(x.R) := {YI, ... , YR} be the resulting set. Instead of performing a new Markov 
Monte Carlo run to generate a new sample according to p(w I DCn) U (x, y)), we 
use the old set WCB) of parameters and reweight them (importance sampling). 
In this way we may approximate integrals of some function g( w) with respect to 
p(w I DCn) U (x, y)) [Kalos Whitlock 86, p.92]: 

j ( ) ( ID U( - -))d __ L~-lg(Wb)P(ylx,Wb) 
9 w P W Cn) X, Y W -- B 

Lb=l p(Y I x, Wb) 
(2) 

The approximation error approaches zero as the size of WCB) increases. 

3.1 APPROXIMATION OF FUTURE LOSS 

Consider the future loss f;,x(x) given new observation (x, y) and trial input Xt. In 
the case of the square loss function, (1) can be transformed to 

f~,.t(Xt) = j[!(Xt,w)-E(yIXt,Dcn)U(X,y)Wp(wIDcn)U(x,y))dw (3) 

+ j £T2(w) p(w I DCn) U (x, y)) dw 

where £T2(w) := Var(y I x, w) is independent of x. Assume a set XT = {Xl, ... , XT} 
is given, which is representative of trial inputs for the distribution p(x). Define 

S(x, y) := L~=i p(Y I x, Wb) for y E YCx,R) . Then from equations (2) and (3) we get 

E(ylxt,DCn)U(x,y)):= 1/S(x,Y)L~=1!(Xt,Wb)P(Ylx,Wb) and 

1 B 

S(x -) L£T2(Wb)P(Ylx,Wb) (4) 
,y b=l 

1 B 

+ S(x -) I)!(Xt, Wb) - E(y I Xt, DCn) U (x, y))]2 p(Y I x, Wb) 
,y b=l 

The final value of f; is obtained by averaging over the different y E YCx,R) and 
different trial inputs Xt E XT. To reduce the variance, the trial inputs Xt should 
be selected by importance sampling (2) to concentrate them on regions with high 
current loss (see (5) below). To facilitate the search for an x with minimal f; we 
reduce the extent of random fluctuations of the y values. Let (Vi, ... , VR) be a 
vector of random numbers Vr -- N(O,1), and let jr be randomly selected from 
{1, ... , B}. Then for each x the possible observations Yr E YCx,R) are defined as 
Yr := !(x, wir) + Vr£T2(wir). In this way the difference between neighboring inputs 
is not affected by noise, and search procedures can exploit gradients. 

3.2 CURRENT LOSS 

As a proxy for the future loss, we may use the current loss at x, 

rcurr(x) = p(x) j L(y, d*(x)) p(y I x, DCn)) dy (5) 
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where p(x) weights the inputs according to their relevance. For the square loss 
function the average loss at x is the conditional variance Var(y I x, DCn». We get 

Tcurr(X) = p(x) jU(x,w)-E(YIX,DCn»)2p(wIDcn»dw (6) 

+ p(x) j 0"2(w) p(w I D(n» dw 

If E(y I x,DCn» fr~~=lf(x,wb) and the sample WCB):= {Wl, ... ,WB} is 
representative of p(w I DCn» we can approximate the current loss with 

p( x) ~ A 2 p( x) ~ 2 
Tcurr(X) ~ 13 L..tU(x, Wb) - E(y I x, DCn») + 13 L..t 0" (Wb) 

b=l b=l 

(7) 

If the input distribution p( x) is uniform, the second term is independent of x. 

3.3 COMPLEXITY REGULARIZATION 

Neural network models can represent arbitrary mappings between finite-dimensional 
spaces if the number of hidden units is sufficiently large [Hornik Stinchcombe 89]. 
As the number of observations grows, more and more hidden units are neces­
sary to catch the details of the mapping. Therefore we use a sequential proce­
dure to increase the capacity of our networks during query learning. White and 
Wooldridge call this approach the "method of sieves" and provide some asym­
ptotic results on its consistency [White Wooldridge 91]. Gelfand and Dey com­
pare Bayesian approaches for model selection and prove that, in the case of ne­
sted models Ml and M2, model choice by the ratio of popular Bayes factors 
p(DCn) I Mi) := J p(DCn) I W, Mi) p(w I Mi) dw will always choose the full model 
regardless of the data as n --t 00 [Gelfand Dey 94]. They show that the pseudo­
Bayes factor, a Bayesian variant of crossvalidation, is not affected by this paradox 

n n 

A(Ml' M2) := II p(y; I x;, DCn,j), Mt}j II p(Y; I x;, DCn,j), M2) (8) 
;=1 j=1 

Here DCn ,;) := D(n) \ (x;, y;). As the difference between p(w I DCn» and p( wi D(n,j» 
is usually small, we use the full posterior as the importance function (2) and get 

p(Y; I x;, DCn,j),Mi) = j p(Y; IXj,w,Mi)p(wIDCn,j),Mi)dw 

'" B/(t,l/P(Y;li;,W"M,)) (9) 

4 NUMERICAL DEMONSTRATION 

In a first experiment we tested the approach for a small a 1-2-1 MLP target func­
tion with Gaussian noise N(0,0.05 2). We assumed the square loss function and a 
uniform input distribution p(x) over [-5,5]. Using the "true" architecture for the 
approximating model we started with a single randomly generated observation. We 
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Figure 1: Future loss exploration: predicted posterior mean, future loss and current 
loss for 12 observations (left), and root mean square error of prediction (right) . 

estimated the future loss by (4) for 100 different inputs and selected the input with 
smallest future loss as the next query. B = 50 parameter vectors were generated re­
quiring 200,000 Metropolis steps. Simultaneously we approximated the current loss 
criterion by (7). The left side of figure 1 shows the typical relation of both measures. 
In most situations the future loss is low in the same regions where the current loss 
(posterior standard deviation of mean prediction) is high. The queries are concen­
trated in areas of high variation and the estimated posterior mean approximates 
the target function quite well. 

In the right part of figure 1 the RMSE of prediction averaged over 12 independent 
experiments is shown. After a few observations the RMSE drops sharply. In our 
example there is no marked difference between the prediction errors resulting from 
the future loss and the current loss criterion (also averaged over 12 experiments). 
Considering the substantial computing effort this favors the current loss criterion. 
The dots indicate the RMSE for randomly generated data (averaged over 8 experi­
ments) using the same Bayesian prediction procedure. Because only few data points 
were located in the critical region of high variation the RMSE is much larger. 

In the second experiment, a 2-3-1 MLP defined the target function I(x, wo) , to which 
Gaussian noise of standard deviation 0.05 was added. I( x, wo) is shown in the left 
part of figure 2. We used five MLPs with 2-6 hidden units as candidate models 
Ml, .. . , M5 and generated B = 45 samples WeB) of the posterior pew I D(n)' M.), 
where D(n) is the current data. We started with 30,000 Metropolis steps for small 
values of n and increased this to 90,000 Metropolis steps for larger values of n. 
For a network with 6 hidden units and n = 50 observations, 10,000 Metropolis 
steps took about 30 seconds on a Sparc10 workstation. Next, we used equation (9) 
to compare the different models, and then used the optimal model to calculate the 
current loss (7) on a regular grid of 41 x 41 = 1681 query points x. Here we assumed 
the square loss function and a uniform input distribution p(x) over [-5,5] x [-5,5]. 
We selected the query point with maximal current loss and determined the final 
query point with a hillclimbing algorithm. In this way we were rather sure to get 
close to the true global optimum. 

The main result of the experiment is summarized in the right part of figure 2. It 
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Figure 2: Current loss exploration: MLP target function and root mean square error. 

shows - averaged over 3 experiments - the root mean square error between the true 
mean value and the posterior mean E(y I x) on the grid of 1681 inputs in relation to 
the sample size. Three phases of the exploration can be distinguished (see figure 3). 
In the beginning a search is performed with many queries on the border of the 
input area. After about 20 observations the algorithm knows enough detail about 
the true function to concentrate on the relevant parts of the input space. This leads 
to a marked reduction ofthe mean square error. After 40 observations the systematic 
part of the true function has been captured nearly perfectly. In the last phase of 
the experiment the algorithm merely reduces the uncertainty caused by the random 
noise. In contrast , the data generated randomly does not have sufficient information 
on the details of f(x , w), and therefore the error only gradually decreases. Because 
of space constraints we cannot report experiments with radial basis functions which 
led to similar results. 
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