
A Connectionist Technique for Accelerated
Textual Input: Letting a Network Do the Typing

Dean A. Pomerleau
pomerlea@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract
Each year people spend a huge amount of time typing. The text people type
typically contains a tremendous amount of redundancy due to predictable
word usage patterns and the text's structure. This paper describes a
neural network system call AutoTypist that monitors a person's typing and
predicts what will be entered next. AutoTypist displays the most likely
subsequent word to the typist, who can accept it with a single keystroke,
instead of typing it in its entirety. The multi-layer perceptron at the heart
of Auto'JYpist adapts its predictions of likely subsequent text to the user's
word usage pattern, and to the characteristics of the text currently being
typed. Increases in typing speed of 2-3% when typing English prose and
10-20% when typing C code have been demonstrated using the system,
suggesting a potential time savings of more than 20 hours per user per year.
In addition to increasing typing speed, AutoTypist reduces the number of
keystrokes a user must type by a similar amount (2-3% for English, 10-
20% for computer programs). This keystroke savings has the potential to
significantly reduce the frequency and severity of repeated stress injuries
caused by typing, which are the most common injury suffered in today's
office environment.

1 Introduction
People in general, and computer professionals in particular, spend a huge amount of time
typing. Most of this typing is done sitting in front of a computer display using a keyboard as
the primary input device. There are a number of efforts using artificial neural networks and
other techniques to improve the comfort and efficiency of human-computer communication
using alternative modalities. Speech recognition [Waibel et al., 1988], handwritten character
recognition [LeCun et al., 1989], and even gaze tracking [Baluja & Pomerleau, 1993] have

1040 Dean Pomerleau

the potential to facilitate this communication. But these technologies are still in their infancy,
and at this point cannot approach the speed and accuracy of even a moderately skilled typist
for textual input.

Is there some way to improve the efficiency of standard keyboard-based human-computer
communication? The answer is yes, there are several ways to make typing more efficient.
The first, called the Dvorak keyboard, has been around for over 60 years. The Dvorak
keyboard has a different arrangement of keys, in which the most common letters, E, T, S,
etc., are on the home row right under the typist's fingers. This improved layout requires the
typist's fingers to travel1116th as far, resulting in an average of20% increase in typing speed.
Unfortunately, the de facto standard in keyboards is the inefficient QWERTY configuration,
and people are reluctant to learn a new layout.

This paper describes another approach to improving typing efficiency, which can be used
with either the QWERTY or DVORAK keyboards. It takes advantage of the hundreds of
thousands of computer cycles between the typist's keystrokes which are typically wasted
while the computer idly waits for additional input. By spending those cycles trying to predict
what the user will type next, and allowing the typist to accept the prediction with a single
keystroke, substantial time and effort can be saved over typing the entire text manUally.

There are actually several such systems available today, including a package called "Au
tocompletion" developed for gnu-emacs by the author, and an application called "Magic
Typist" developed for the Apple Macintosh by Olduvai Software. Each of these maintains
a database of previously typed words, and suggests completions for the word the user is
currently in the middle of typing, which can be accepted with a single keystroke. While rea
sonable useful, both have substantial drawbacks. These systems use a very naive technique
for calculating the best completion, simply the one that was typed most recently. In fact,
experiments conducted for this paper indicated that this "most recently used" heuristic is
correct only about 40% of the time. In addition, these two systems are annoyingly verbose,
always suggesting a completion if a word has been typed previously which matches the
prefix typed so far. They interrupt the user's typing to suggest a completion even if the
word they suggest hasn't been typed in many days, and there are many other alternative
completions for the prefix, making it unlikely that the suggestion will be correct. These
drawbacks are so severe that these systems frequently decrease the user's typing speed,
rather than increase it.

The Auto'JYpist system described in this paper employs an artificial neural network during the
spare cycles between keystrokes to make more intelligent decisions about which completions
to display, and when to display them.

2 The Prediction Task
To operationalize the goal of making more intelligent decisions about which completions
to display, we have defined the neural networks task to be the following: Given a list of
candidate completions for the word currently being typed, estimate the likelihood that the
user is actually typing each of them. For example, if the user has already types the prefix
"aut", the word he is trying to typing could anyone of a large number of possibilities,
including "autonomous", "automatic", "automobile" etc. Given a list of these possibilities
taken from a dictionary, the neural network's task is to estimate the probability that each of
these is the word the user will type.

A neural network cannot be expected to accurately estimate the probability for a particular
completion based on a unique representation for each word, since there are so many words

A Connectionist Technique for Accelerated Textual Input 1041

ATTRIBUTE DESCRIPTION

absolute age time since word was last typed
relative age ratio of the words age to age of the

most recently typed alternative
absolute frequency number of times word has been typed

in the past
relative frequency ratio of the words frequency to that

of the most often typed alternative
typed previous 1 if user has typed word previously,

o otherwise
total length the word's length, in characters
remaining length the number of characters left after the

prefix to be typed for this word
special character match the percentage of "special characters"

(Le. not a-z) in this word relative to the
percentage of special characters typed
recently

capitalization match 1 if the capitalization of the prefix the
user has already typed matches the word's
usual capitalization, 0 otherwise.

Table 1: Word attributes used as input to the neural network for predicting word probabilities.

in the English language, and there is only very sparse data available to characterize an
individual's usage pattern for any single word. Instead, we have chosen to use an input
representation that contains only those characteristics of a word that could conceivably have
an impact on its probability of being typed. The attributes we employed to characterize each
completion are listed in Table 1.

These are not the only possible attributes that could be used to estimate the probability of
the user typing a particular word. An additional characteristic that could be helpful is the
word's part of speech (i.e. noun, verb, adjective, etc.). However this attribute is not typically
available or even meaningful in many typing situations, for instance when typing computer
programs. Also, to effectively exploit information regarding a word's part of speech would
require the network to have knowledge about the context of the current text. In effect, it
would require at least an approximate parse tree of the current sentence. While there are
techniques, including connectionist methods [Jain, 1991], for generating parse trees, they
are prone to errors and computationally expensive. Since word probability predictions in
our system must occur many times between each key the user types, we have chosen to
utilize only the easy to compute attributes shown in Table 1 to characterize each completion.

3 Network Processing
The network architecture employed for this system is a feedforward multi-layer perceptron.
Each of the networks investigated has nine input units, one for each of the attributes listed
in Table 1, and a single output unit. As the user is typing a word, the prefix he has typed so
far is used to find candidate completions from a dictionary, which contains 20,000 English
words plus all words the user has typed previously. For each of these candidate completions,
the nine attributes in Table 1 are calculated, and scaled to the range of 0.0 to 1.0. These
values become the activations of the nine units in the input layer. Activation is propagated
through the network to produce an activation for the single output unit, representing the

1042 Dean Pomerleau

probability that this particular candidate completion is the one the user is actually typing.
These candidate probabilities are then used to determine which (if any) of the candidates
should be displayed to the typist, using a technique described in a later section.

To train the network, the user's typing is again monitored. After the user finishes typing a
word, for each prefix of the word a list of candidate completions, and their corresponding
attributes, is calculated. These form the input training patterns. The target activation for
the single output unit on a pattern is set to 1.0 if the candidate completion represented by
that pattern is the word the user was actually typing, and 0.0 if the candidate is incorrect.
Note that the target output activation is binary. As will be seen below, the actual output the
network learns to produce is an accurate estimate of the completion's probability. Currently,
training of the network is conducted off-line, using a fixed training set collected while a
user types normally. Training is performed using the standard backpropagation learning
algorithm.

4 Experiments
Several tests were conducted to determine the ability of multi-layer perceptrons to perform
the mapping from completion attributes to completion probability. In each of the tests,
networks were trained on a set of inputJoutputexemplars collected over one week of a single
subject's typing. During the training data collection phase, the subject's primary text editing
activities involved writing technical papers and composing email, so the training patterns
represent the word choice and frequency distributions associated with these activities. This
training set contained of 14,302 patterns of the form described above.

The first experiment was designed to determine the most appropriate network architecture
for the prediction task. Four architecture were trained on a 10,000 pattern subset of the
training data, and the remaining 4,302 patterns were used for cross validation. The first of
the four architectures was a perceptron, with the input units connected directly to the single
output unit. The remaining three architectures had a single hidden layer, with three, six
or twelve hidden units. The networks with hidden units were fully connected without skip
connections from inputs to output. Networks of three and six hidden units which included
skip connections were tested, but did not exhibit improved performance over the networks
without skip connections, so they are not reported.

Each of the network architectures were trained four times, with different initial random
weights. The results reported are those produced by the best set of weights from these
trials. Note that the variations between trials with a single architecture were small relative
to the variations between architectures. The trained networks were tested on a disjoint set
of 10,040 collected while the same subject was typing another technical paper.

Three different performance metrics were employed to evaluate the performance of these
architectures on the test set. The first was the standard mean squared error (MSE) metric,
depicted in Figure 1. The MSE results indicate that the architectures with six and twelve
hidden units were better able to learn the task than either the perceptron, or the network with
only three hidden units. However the difference appears to be relatively small, on the order
of about 10%.

MSE is not a very informative error metric, since the target output is binary (1 if the
completion is the one the user was typing, 0 otherwise), but the real goal is to predict
the probability that the completion is correct. A more useful measure of performance is
shown in Figure 2. For each of the four architectures, it depicts the predicted probability
that a completion is correct, as measured by the network's output activation value, vs. the

A Connectionist Technique for Accelerated Textual Input

0.095

0.070 __

Perceptron 3 Hidden
Units

6 Hidden
Units

12 Hidden
Units

1043

Figure 1: Mean squared error for four networks on the task of predicting completion
probability.

actual probability that a completion is correct. The lines for each of the four networks
were generated in the following manner. The network's output response on each of the
10,040 test patterns was used to group the test patterns into 10 categories. All the patterns
which represented completions that the network predicted to have a probability of between
o and 10% of being correct (output activations of 0.0-0.1) were placed in one category.
Completions that the network predicted to have a 10-20% change of being right were placed
in the second category, etc. For each of these 10 categories, the actual likelihood that
a completion classified within the category is correct was calculated by determining the
percent of the completions within that category that were actually correct.

As a concrete example, the network with 6 hidden units produced an output activation
between 0.2 and 0.3 on 861 of the 10,040 test patterns, indicating that on these patterns
it considered there to be a 20-30% chance that the completion each pattern represented
was the word the user was typing. On 209 of these 861 patterns in this category, the
completion was actually the one the user was typing, for a probability of 24.2%. Ideally, the
actual probability should be 25%, half way between the minimum and maximum predicted
probability thresholds for this category. This ideal classification performance is depicted as
the solid 45° line labeled "Target" in Figure 2. The closer the line for a given network matches
this 45° line, the more the network's predicted probability matches the actual probability
for a completion. Again, the networks with six and twelve hidden units outperformed the
networks with zero and three hidden units, as illustrated by their much smaller deviations
from the 45° line in Figure 2.

The output activations produced by the networks with six and twelve hidden units reflect
the actual probability that the completion is correct quite accurately. However prediction
accuracy is only half of what is required to perform the final system goal, which recall was
to identify as many high probability completions as possible, so they can be suggested to
the user without requiring him to manually type them. If overall accuracy of the probability
predictions were the only requirement, a network could score quite highly by classifying

1044 Dean Pomerleau

1.00 n;;get
0 Perceptron -..... 0.80 3 Hidden Units .D
~ 6 Hidden Units .D e 0.60 12 Hidden Units

~ -~ 0.40 a u
< 0.20

0.00

Figure 2: Predicted vs. actual probability of a completion being correct for the four
architectures tested.

every pattern into the 10-20% category, since about 15% of the 10,040 completions in the
test set represent the word the user was typing at the time. But a constant prediction of
10-20% probability on every alternative completion would not allow the system to identify
and suggest to the user those individual completions that are much more likely than the other
alternatives.

To achieve the overall system goal, the network must be able to accurately identify as many
high probability completions as possible. The ability of each of the four networks to achieve
this goal is shown in Figure 3. This figures shows the percent of the 10,040 test patterns each
of the four networks classified as having more than a 60% probability of being correct. The
60% probability threshold was selected because it represents a level of support for a single
completion that is significantly higher than the support for all the others. As can be seen in
Figure 3, the networks with hidden units again significantly outperformed the perceptron,
which was able to correctly identify fewer than half as many completions as highly likely.

5 Auto1)rpist System Architecture and Performance
The networks with six and twelve hidden units are able to accurately identify individual
completions that have a high probability of being the word the user is typing. In order
to exploit this prediction ability and speed up typing, we have build an X-window based
application called AutoTypist around the smaller of the two networks. The application
serves as the front end for the network, monitoring the user's typing and identifying likely
completions for the current word between each keystroke. If the network at the core of
AutoTypist identifies a single completion that it is both significantly more probably than all
the rest, and also longer than a couple characters, it will momentarily display the completion
after the current cursor location in whatever application the user is currently typing1• If the
displayed completion is the word the user is typing, he can accept it with a single keystroke

(The criterion for displaying a completion, and the human interface for AutoTypist, are somewhat
more sophisticated than this description. However for the purposes of this paper, a high level
description is sufficient.

A Connectionist Technique for Accelerated Textual Input

Percent of 6.0

Patterns Classified5.0

as over 60%
Probable

4.0

3.0

2.0

1.0

Perceptron 3 Hidden
Units

6 Hidden
Units

1045

12 Hidden
Units

Figure 3: Percent of candidate completions classified as having more than a 60% chance of
being correct for the four architectures tested.

and move on to typing the next word. If the displayed completion is incorrect, he can
continue typing and the completion will disappear.

Quantitative results with the fully integrated Auto1Ypist system, while still preliminary, are
very encouraging. In a two week trial with two subjects, who could type at 40 and 60 wpm
without AutoTypists, their typings speeds were improved by 2.37% and 2.21 % respectively
when typing English text. Accuracy improvements during these trials were even larger,
since spelling mistakes become rare when AutoTypist is doing a significant part of the
typing automatically. When writing computer programs, speed improvements of 12.93%
and 18.47% were achieved by the two test subjects. This larger speedup was due to the
frequent repetition of variable and function names in computer programs, which Auto1Ypist
was able to expedite. Not only is computer code faster to produce with AutoTypist, it is
also easier to understand. AutoTypist encourages the programmer to use long, descriptive
variable and function names, by making him type them in their entirety only once. On
subsequent instances of the same name, the user need only type the first few characters and
then exploitAutoTypist's completion mechanism to type the rest. These speed improvements
were achieved by subjects who are already relatively proficient typists. Larger gains can
be expected for less skilled typists, since typing an entire word with a single keystroke will
save more time when each keystroke takes longer.

Perhaps an even more significant benefit results from the reduced number of keystrokes
Auto1Ypist requires the user to type. During the test trials described above, the two test
subjects had to strike an average of 2.89% fewer keys on the English text, and 16.42% fewer
keys on the computer code than would have been required to type the text out in its entirety.
Clearly this keystroke savings has the potential to benefit typists who suffer from repeated
stress injuries brought on by typing.

Unfortunately it is impossible to quantitatively compare these results with those of the other
completion-based typing aids described in the introduction, since the other systems have
not been quantitatively evaluated. Subjectively, Auto1Ypist is far less disturbing than the

1046 Dean Pomerleau

alternatives, since it only displays a completion when there is a very good chance it is the
correct one.

6 Future Work
Further experiments are required to verify the typing speed improvements possible with
AutoTypist, and to compare it with alternative typing improvement systems. Preliminary
experiments suggest a network trained on the word usage patterns of one user can generalize
to that of other users, but it may be necessary to train a new network for each individual
typist. Also, the experiments conducted for this paper indicate that a network trained on
one type of text, English prose, can generalize to text with quite different word frequency
patterns, C language computer programs. However substantial prediction improvements,
and therefore typing speedup, may be possible by training separate networks for different
types of text. The question of how to rapidly adapt a single network, or perhaps a mixture
of expert networks, to new text types is one which should be investigated.

Even without these extensions, AutoTypist has the potential to greatly improve the comfort
and efficiency of the typing tasks. For people who type English text two hours per workday,
even the conservative estimate of a 2% speedup translates into 10 hours of savings per
year. The potential time savings for computer programming is even more dramatic. A
programmer who types code two hours per workday could potentially save between 52
and 104 hours in a single year by using AutoTypist. With such large potential benefits,
commercial development of the AutoTypist system is also being investigated.

Acknowledgements

I would like to thank David Simon and Martial Hebert for their helpful suggestions, and for
acting as willing test subjects during the development of this system.

References

[Baluja & Pomerleau, 1993] Baluja, S. and Pomerleau, D.A. (1993) Non-Intrusive Gaze
Tracking Using Artificial Neural Networks. In Advances in Neural Information Pro
cessing Systems 6, San Mateo, CA: Morgan Kaufmann Publishers.

[Jain,1991] Jain, A.N. (1991) PARSEC: A connectionist learning architecture for parsing
spoken language. Carnegie Mellon University School of Computer Science Technical
Report CMU-CS-91-208.

[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, 1.S., Henderson, D., Howard, R.E.,
Hubbard, W., and Jackel, L.D. (1989) Backpropagation applied to handwritten zip
code recognition. Neural Computation 1(4).

[Waibel et al., 1988] Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K. (1988)
Phoneme recognition: Neural Networks vs. Hidden Markov Models. Proceedings from
Int. Conf on Acoustics, Speech and Signal Processing, New York, New York.

