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Abstract 
Each year people spend a huge amount of time typing. The text people type 
typically contains a tremendous amount of redundancy due to predictable 
word usage patterns and the text's structure. This paper describes a 
neural network system call AutoTypist that monitors a person's typing and 
predicts what will be entered next. AutoTypist displays the most likely 
subsequent word to the typist, who can accept it with a single keystroke, 
instead of typing it in its entirety. The multi-layer perceptron at the heart 
of Auto'JYpist adapts its predictions of likely subsequent text to the user's 
word usage pattern, and to the characteristics of the text currently being 
typed. Increases in typing speed of 2-3% when typing English prose and 
10-20% when typing C code have been demonstrated using the system, 
suggesting a potential time savings of more than 20 hours per user per year. 
In addition to increasing typing speed, AutoTypist reduces the number of 
keystrokes a user must type by a similar amount (2-3% for English, 10-
20% for computer programs). This keystroke savings has the potential to 
significantly reduce the frequency and severity of repeated stress injuries 
caused by typing, which are the most common injury suffered in today's 
office environment. 

1 Introduction 
People in general, and computer professionals in particular, spend a huge amount of time 
typing. Most of this typing is done sitting in front of a computer display using a keyboard as 
the primary input device. There are a number of efforts using artificial neural networks and 
other techniques to improve the comfort and efficiency of human-computer communication 
using alternative modalities. Speech recognition [Waibel et al., 1988], handwritten character 
recognition [LeCun et al., 1989], and even gaze tracking [Baluja & Pomerleau, 1993] have 
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the potential to facilitate this communication. But these technologies are still in their infancy, 
and at this point cannot approach the speed and accuracy of even a moderately skilled typist 
for textual input. 

Is there some way to improve the efficiency of standard keyboard-based human-computer 
communication? The answer is yes, there are several ways to make typing more efficient. 
The first, called the Dvorak keyboard, has been around for over 60 years. The Dvorak 
keyboard has a different arrangement of keys, in which the most common letters, E, T, S, 
etc., are on the home row right under the typist's fingers. This improved layout requires the 
typist's fingers to travel1116th as far, resulting in an average of20% increase in typing speed. 
Unfortunately, the de facto standard in keyboards is the inefficient QWERTY configuration, 
and people are reluctant to learn a new layout. 

This paper describes another approach to improving typing efficiency, which can be used 
with either the QWERTY or DVORAK keyboards. It takes advantage of the hundreds of 
thousands of computer cycles between the typist's keystrokes which are typically wasted 
while the computer idly waits for additional input. By spending those cycles trying to predict 
what the user will type next, and allowing the typist to accept the prediction with a single 
keystroke, substantial time and effort can be saved over typing the entire text manUally. 

There are actually several such systems available today, including a package called "Au
tocompletion" developed for gnu-emacs by the author, and an application called "Magic 
Typist" developed for the Apple Macintosh by Olduvai Software. Each of these maintains 
a database of previously typed words, and suggests completions for the word the user is 
currently in the middle of typing, which can be accepted with a single keystroke. While rea
sonable useful, both have substantial drawbacks. These systems use a very naive technique 
for calculating the best completion, simply the one that was typed most recently. In fact, 
experiments conducted for this paper indicated that this "most recently used" heuristic is 
correct only about 40% of the time. In addition, these two systems are annoyingly verbose, 
always suggesting a completion if a word has been typed previously which matches the 
prefix typed so far. They interrupt the user's typing to suggest a completion even if the 
word they suggest hasn't been typed in many days, and there are many other alternative 
completions for the prefix, making it unlikely that the suggestion will be correct. These 
drawbacks are so severe that these systems frequently decrease the user's typing speed, 
rather than increase it. 

The Auto'JYpist system described in this paper employs an artificial neural network during the 
spare cycles between keystrokes to make more intelligent decisions about which completions 
to display, and when to display them. 

2 The Prediction Task 
To operationalize the goal of making more intelligent decisions about which completions 
to display, we have defined the neural networks task to be the following: Given a list of 
candidate completions for the word currently being typed, estimate the likelihood that the 
user is actually typing each of them. For example, if the user has already types the prefix 
"aut", the word he is trying to typing could anyone of a large number of possibilities, 
including "autonomous", "automatic", "automobile" etc. Given a list of these possibilities 
taken from a dictionary, the neural network's task is to estimate the probability that each of 
these is the word the user will type. 

A neural network cannot be expected to accurately estimate the probability for a particular 
completion based on a unique representation for each word, since there are so many words 
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ATTRIBUTE DESCRIPTION 

absolute age time since word was last typed 
relative age ratio of the words age to age of the 

most recently typed alternative 
absolute frequency number of times word has been typed 

in the past 
relative frequency ratio of the words frequency to that 

of the most often typed alternative 
typed previous 1 if user has typed word previously, 

o otherwise 
total length the word's length, in characters 
remaining length the number of characters left after the 

prefix to be typed for this word 
special character match the percentage of "special characters" 

(Le. not a-z) in this word relative to the 
percentage of special characters typed 
recently 

capitalization match 1 if the capitalization of the prefix the 
user has already typed matches the word's 
usual capitalization, 0 otherwise. 

Table 1: Word attributes used as input to the neural network for predicting word probabilities. 

in the English language, and there is only very sparse data available to characterize an 
individual's usage pattern for any single word. Instead, we have chosen to use an input 
representation that contains only those characteristics of a word that could conceivably have 
an impact on its probability of being typed. The attributes we employed to characterize each 
completion are listed in Table 1. 

These are not the only possible attributes that could be used to estimate the probability of 
the user typing a particular word. An additional characteristic that could be helpful is the 
word's part of speech (i.e. noun, verb, adjective, etc.). However this attribute is not typically 
available or even meaningful in many typing situations, for instance when typing computer 
programs. Also, to effectively exploit information regarding a word's part of speech would 
require the network to have knowledge about the context of the current text. In effect, it 
would require at least an approximate parse tree of the current sentence. While there are 
techniques, including connectionist methods [Jain, 1991], for generating parse trees, they 
are prone to errors and computationally expensive. Since word probability predictions in 
our system must occur many times between each key the user types, we have chosen to 
utilize only the easy to compute attributes shown in Table 1 to characterize each completion. 

3 Network Processing 
The network architecture employed for this system is a feedforward multi-layer perceptron. 
Each of the networks investigated has nine input units, one for each of the attributes listed 
in Table 1, and a single output unit. As the user is typing a word, the prefix he has typed so 
far is used to find candidate completions from a dictionary, which contains 20,000 English 
words plus all words the user has typed previously. For each of these candidate completions, 
the nine attributes in Table 1 are calculated, and scaled to the range of 0.0 to 1.0. These 
values become the activations of the nine units in the input layer. Activation is propagated 
through the network to produce an activation for the single output unit, representing the 
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probability that this particular candidate completion is the one the user is actually typing. 
These candidate probabilities are then used to determine which (if any) of the candidates 
should be displayed to the typist, using a technique described in a later section. 

To train the network, the user's typing is again monitored. After the user finishes typing a 
word, for each prefix of the word a list of candidate completions, and their corresponding 
attributes, is calculated. These form the input training patterns. The target activation for 
the single output unit on a pattern is set to 1.0 if the candidate completion represented by 
that pattern is the word the user was actually typing, and 0.0 if the candidate is incorrect. 
Note that the target output activation is binary. As will be seen below, the actual output the 
network learns to produce is an accurate estimate of the completion's probability. Currently, 
training of the network is conducted off-line, using a fixed training set collected while a 
user types normally. Training is performed using the standard backpropagation learning 
algorithm. 

4 Experiments 
Several tests were conducted to determine the ability of multi-layer perceptrons to perform 
the mapping from completion attributes to completion probability. In each of the tests, 
networks were trained on a set of inputJoutputexemplars collected over one week of a single 
subject's typing. During the training data collection phase, the subject's primary text editing 
activities involved writing technical papers and composing email, so the training patterns 
represent the word choice and frequency distributions associated with these activities. This 
training set contained of 14,302 patterns of the form described above. 

The first experiment was designed to determine the most appropriate network architecture 
for the prediction task. Four architecture were trained on a 10,000 pattern subset of the 
training data, and the remaining 4,302 patterns were used for cross validation. The first of 
the four architectures was a perceptron, with the input units connected directly to the single 
output unit. The remaining three architectures had a single hidden layer, with three, six 
or twelve hidden units. The networks with hidden units were fully connected without skip 
connections from inputs to output. Networks of three and six hidden units which included 
skip connections were tested, but did not exhibit improved performance over the networks 
without skip connections, so they are not reported. 

Each of the network architectures were trained four times, with different initial random 
weights. The results reported are those produced by the best set of weights from these 
trials. Note that the variations between trials with a single architecture were small relative 
to the variations between architectures. The trained networks were tested on a disjoint set 
of 10,040 collected while the same subject was typing another technical paper. 

Three different performance metrics were employed to evaluate the performance of these 
architectures on the test set. The first was the standard mean squared error (MSE) metric, 
depicted in Figure 1. The MSE results indicate that the architectures with six and twelve 
hidden units were better able to learn the task than either the perceptron, or the network with 
only three hidden units. However the difference appears to be relatively small, on the order 
of about 10%. 

MSE is not a very informative error metric, since the target output is binary (1 if the 
completion is the one the user was typing, 0 otherwise), but the real goal is to predict 
the probability that the completion is correct. A more useful measure of performance is 
shown in Figure 2. For each of the four architectures, it depicts the predicted probability 
that a completion is correct, as measured by the network's output activation value, vs. the 
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Figure 1: Mean squared error for four networks on the task of predicting completion 
probability. 

actual probability that a completion is correct. The lines for each of the four networks 
were generated in the following manner. The network's output response on each of the 
10,040 test patterns was used to group the test patterns into 10 categories. All the patterns 
which represented completions that the network predicted to have a probability of between 
o and 10% of being correct (output activations of 0.0-0.1) were placed in one category. 
Completions that the network predicted to have a 10-20% change of being right were placed 
in the second category, etc. For each of these 10 categories, the actual likelihood that 
a completion classified within the category is correct was calculated by determining the 
percent of the completions within that category that were actually correct. 

As a concrete example, the network with 6 hidden units produced an output activation 
between 0.2 and 0.3 on 861 of the 10,040 test patterns, indicating that on these patterns 
it considered there to be a 20-30% chance that the completion each pattern represented 
was the word the user was typing. On 209 of these 861 patterns in this category, the 
completion was actually the one the user was typing, for a probability of 24.2%. Ideally, the 
actual probability should be 25%, half way between the minimum and maximum predicted 
probability thresholds for this category. This ideal classification performance is depicted as 
the solid 45° line labeled "Target" in Figure 2. The closer the line for a given network matches 
this 45° line, the more the network's predicted probability matches the actual probability 
for a completion. Again, the networks with six and twelve hidden units outperformed the 
networks with zero and three hidden units, as illustrated by their much smaller deviations 
from the 45° line in Figure 2. 

The output activations produced by the networks with six and twelve hidden units reflect 
the actual probability that the completion is correct quite accurately. However prediction 
accuracy is only half of what is required to perform the final system goal, which recall was 
to identify as many high probability completions as possible, so they can be suggested to 
the user without requiring him to manually type them. If overall accuracy of the probability 
predictions were the only requirement, a network could score quite highly by classifying 
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Figure 2: Predicted vs. actual probability of a completion being correct for the four 
architectures tested. 

every pattern into the 10-20% category, since about 15% of the 10,040 completions in the 
test set represent the word the user was typing at the time. But a constant prediction of 
10-20% probability on every alternative completion would not allow the system to identify 
and suggest to the user those individual completions that are much more likely than the other 
alternatives. 

To achieve the overall system goal, the network must be able to accurately identify as many 
high probability completions as possible. The ability of each of the four networks to achieve 
this goal is shown in Figure 3. This figures shows the percent of the 10,040 test patterns each 
of the four networks classified as having more than a 60% probability of being correct. The 
60% probability threshold was selected because it represents a level of support for a single 
completion that is significantly higher than the support for all the others. As can be seen in 
Figure 3, the networks with hidden units again significantly outperformed the perceptron, 
which was able to correctly identify fewer than half as many completions as highly likely. 

5 Auto1)rpist System Architecture and Performance 
The networks with six and twelve hidden units are able to accurately identify individual 
completions that have a high probability of being the word the user is typing. In order 
to exploit this prediction ability and speed up typing, we have build an X-window based 
application called AutoTypist around the smaller of the two networks. The application 
serves as the front end for the network, monitoring the user's typing and identifying likely 
completions for the current word between each keystroke. If the network at the core of 
AutoTypist identifies a single completion that it is both significantly more probably than all 
the rest, and also longer than a couple characters, it will momentarily display the completion 
after the current cursor location in whatever application the user is currently typing1• If the 
displayed completion is the word the user is typing, he can accept it with a single keystroke 

(The criterion for displaying a completion, and the human interface for AutoTypist, are somewhat 
more sophisticated than this description. However for the purposes of this paper, a high level 
description is sufficient. 
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Figure 3: Percent of candidate completions classified as having more than a 60% chance of 
being correct for the four architectures tested. 

and move on to typing the next word. If the displayed completion is incorrect, he can 
continue typing and the completion will disappear. 

Quantitative results with the fully integrated Auto1Ypist system, while still preliminary, are 
very encouraging. In a two week trial with two subjects, who could type at 40 and 60 wpm 
without AutoTypists, their typings speeds were improved by 2.37% and 2.21 % respectively 
when typing English text. Accuracy improvements during these trials were even larger, 
since spelling mistakes become rare when AutoTypist is doing a significant part of the 
typing automatically. When writing computer programs, speed improvements of 12.93% 
and 18.47% were achieved by the two test subjects. This larger speedup was due to the 
frequent repetition of variable and function names in computer programs, which Auto1Ypist 
was able to expedite. Not only is computer code faster to produce with AutoTypist, it is 
also easier to understand. AutoTypist encourages the programmer to use long, descriptive 
variable and function names, by making him type them in their entirety only once. On 
subsequent instances of the same name, the user need only type the first few characters and 
then exploitAutoTypist's completion mechanism to type the rest. These speed improvements 
were achieved by subjects who are already relatively proficient typists. Larger gains can 
be expected for less skilled typists, since typing an entire word with a single keystroke will 
save more time when each keystroke takes longer. 

Perhaps an even more significant benefit results from the reduced number of keystrokes 
Auto1Ypist requires the user to type. During the test trials described above, the two test 
subjects had to strike an average of 2.89% fewer keys on the English text, and 16.42% fewer 
keys on the computer code than would have been required to type the text out in its entirety. 
Clearly this keystroke savings has the potential to benefit typists who suffer from repeated 
stress injuries brought on by typing. 

Unfortunately it is impossible to quantitatively compare these results with those of the other 
completion-based typing aids described in the introduction, since the other systems have 
not been quantitatively evaluated. Subjectively, Auto1Ypist is far less disturbing than the 
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alternatives, since it only displays a completion when there is a very good chance it is the 
correct one. 

6 Future Work 
Further experiments are required to verify the typing speed improvements possible with 
AutoTypist, and to compare it with alternative typing improvement systems. Preliminary 
experiments suggest a network trained on the word usage patterns of one user can generalize 
to that of other users, but it may be necessary to train a new network for each individual 
typist. Also, the experiments conducted for this paper indicate that a network trained on 
one type of text, English prose, can generalize to text with quite different word frequency 
patterns, C language computer programs. However substantial prediction improvements, 
and therefore typing speedup, may be possible by training separate networks for different 
types of text. The question of how to rapidly adapt a single network, or perhaps a mixture 
of expert networks, to new text types is one which should be investigated. 

Even without these extensions, AutoTypist has the potential to greatly improve the comfort 
and efficiency of the typing tasks. For people who type English text two hours per workday, 
even the conservative estimate of a 2% speedup translates into 10 hours of savings per 
year. The potential time savings for computer programming is even more dramatic. A 
programmer who types code two hours per workday could potentially save between 52 
and 104 hours in a single year by using AutoTypist. With such large potential benefits, 
commercial development of the AutoTypist system is also being investigated. 
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