Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback Bibtex MetaReview Metadata Paper Reviews Supplemental

Authors

Lingge Li, Dustin Pluta, Babak Shahbaba, Norbert Fortin, Hernando Ombao, Pierre Baldi

Abstract

Dynamic functional connectivity, as measured by the time-varying covariance of neurological signals, is believed to play an important role in many aspects of cognition. While many methods have been proposed, reliably establishing the presence and characteristics of brain connectivity is challenging due to the high dimensionality and noisiness of neuroimaging data. We present a latent factor Gaussian process model which addresses these challenges by learning a parsimonious representation of connectivity dynamics. The proposed model naturally allows for inference and visualization of the time-varying connectivity. As an illustration of the scientific utility of the model, application to a data set of rat local field potential activity recorded during a complex non-spatial memory task provides evidence of stimuli differentiation.