Near-Optimal Reinforcement Learning in Dynamic Treatment Regimes

Junzhe Zhang
Department of Computer Science
Columbia University
New York, NY 10027
junzhez@cs.columbia.edu

Elias Bareinboim
Department of Computer Science
Columbia University
New York, NY 10027
eb@cs.columbia.edu

Abstract

A dynamic treatment regime (DTR) consists of a sequence of decision rules, one per stage of intervention, that dictates how to determine the treatment assignment to patients based on evolving treatments and covariates’ history. These regimes are particularly effective for managing chronic disorders and is arguably one of the key aspects towards more personalized decision-making. In this paper, we investigate the online reinforcement learning (RL) problem for selecting optimal DTRs provided that observational data is available. We develop the first adaptive algorithm that achieves near-optimal regret in DTRs in online settings, without any access to historical data. We further derive informative bounds on the system dynamics of the underlying DTR from confounded, observational data. Finally, we combine these results and develop a novel RL algorithm that efficiently learns the optimal DTR while leveraging the abundant, yet imperfect confounded observations.

1 Introduction

In medical practice, a patient typically has to be treated at multiple stages; the physician repeatedly adapts each treatment, tailored to the patient’s time-varying, dynamic state (e.g., level of virus, results of diagnostic tests). Dynamic treatment regimes (DTRs) [18] provide an attractive framework of personalized treatments in longitudinal settings. Operationally, a DTR consists of decision rules that dictate what treatment to provide at each stage, given the patient’s evolving conditions and history. These decision rules are alternatively known as adaptive treatment strategies [12, 13, 19, 33, 34] or treatment policies [16, 37, 38]. DTRs offer an effective vehicle for personalized management of chronic conditions, including cancer, diabetes, and mental illnesses [36].

Consider the DTR instance regarding the treatment of alcohol dependence [19][6], which is graphically represented in Fig. 1a. Based on the condition of alcohol dependent patients (S1), the physician may prescribe a medication or behavioral therapy (X1). Patients are classified as responders or non-responders (S2) based on their level of heavy drinking within the next two months. The physician then must decide whether to continue the initial treatment or switch to an augmented plan combining both medication and behavioral therapy (X2). The unobserved covariate U summarizes all the unknown factors about the patient. We are interested in the primary outcome Y that is the percentage of abstinent days over a 12-month period. The treatment policy π in this set-up is a sequence of decision rules x1 ← π1(s1), x2 ← π2(s1, s2, x1) selecting the values of X1, X2 based on the history.

Policy learning in a DTR setting is concerned with finding an optimal policy π that maximizes the primary outcome Y. The main challenge is that since the parameters of the DTR are often unknown, it’s not immediate how to directly compute the consequences of executing the policy do(π), i.e., the expected value $E_{\pi}[Y]$. Most of the current work in the causal inference literature focus on trying to identify this quantity, $E_{\pi}[Y]$, from finite observational data and causal assumptions about the data-
The goal of this paper is to overcome these challenges. We will introduce novel RL strategies capable of optimizing an unknown DTR while efficiently leveraging the imperfect, but large amounts of observational data. In particular, our contributions are as follows: (1) We introduce the first algorithm (UC-DTR (Alg. 1)) that reaches the near-optimal regret bound in the pure DTR setting, without

\footnote{Standard off-policy RL methods such as Q-Learning rely on the condition of sequential backdoor, thus not applicable for the confounded observational data. For a more elaborate discussion, see [7, Ch. 3.5]}
observed data; (2) We derive novel bounds capable of exploiting observational data based on the DTR structure (Thms. 5 and 6), which are provably tight; (3) We develop a novel algorithm (UC+-DTR (Alg. 2)) that efficiently incorporates these bounds and accelerates learning in the online setting. Our results are validated on randomly generated DTRs and multi-stage clinical trials on cancer treatment.

1.1 Preliminaries

In this section, we introduce the basic notation and definitions used throughout the paper. We use capital letters to denote variables (X) and small letters for their values (x). Let \(\mathcal{X} \) represent the domain of X and \(|\mathcal{X}| \) its dimension. We consistently use the abbreviation \(P(x) \) to represent the probabilities \(P(X = x) \). \(\mathbf{X}_k \) stands for a sequence \(\{X_1, \ldots, X_k\} \) (0 if \(k < 1 \)), and \(\mathbf{X}_k \) represents its domain, i.e., \(\mathcal{X}_1 \times \cdots \times \mathcal{X}_k \). Further, we denote by \(I_i \) the indicator function.

The basic semantical framework of our analysis rests on structural causal models (SCM) [23, Ch. 7]. A SCM \(M \) is a tuple \((U, V, F, P(u)) \) where \(U \) is a set of exogenous (unobserved) variables and \(V \) is a set of endogenous (observed) variables. \(F \) is a set of structural functions where \(f_1 \in F \) decides the values of \(V_i \in V \) taking as argument a combination of other endogenous and exogenous variables (i.e., \(V_i \leftarrow f_1(PA_1, U_i) \). \(PA_i \subseteq V, U_i \subseteq U \)). The values of \(U \) are drawn from the distribution \(P(u) \), and induce an observational distribution \(P(v) \) [23, pp. 205]. Each SCM is associated with a causal diagram in the form of a directed acyclic graph \(G \), where nodes represent endogenous variables, dashed nodes exogenous variables, and arrows stand for functional relations (e.g., see Fig. 1).

An intervention on a set of endogenous variables \(X \), denoted by \(do(x) \), is an operation where values of \(X \) are set to constants \(x \), regardless of how they were ordinarily determined (through the functions \(\{f_X : \forall X \in X\} \)). For a SCM \(M \), let \(M_x \) be a sub-model of \(M \) induced by intervention \(do(x) \). The interventional distribution \(P_x(y) \) induced by \(do(x) \) is the distribution over variables \(Y \) in the sub-model \(M_x \). For a more detailed discussion of SCMs, we refer readers to [23, Ch. 7].

2 Optimizing Dynamic Treatment Regimes

In this section, we will formalize the problem of online optimization in DTRs with confounded observations and provide an efficient solution. We start by defining DTRs in the structural semantics.

Definition 1 (Dynamic Treatment Regime [18]). A dynamic treatment regime (DTR) is a SCM \((U, V, F, P(u)) \) where the endogenous variables \(V = \{\mathbf{X}_K, \mathbf{S}_K, Y\} \); \(K \in \mathbb{N}^+ \) is the total stages of interventions. For stage \(k = 1, \ldots, K \): (1) \(X_k \) is a finite decision decided by a behavior policy \(x_k \leftarrow f_k(\bar{S}_k, \bar{X}_{k-1}, u) \); (2) \(\bar{S}_k \) is a finite state decided by a transition function \(s_k \leftarrow T_k(\bar{X}_k, \bar{S}_{k-1}, u) \). \(Y \) is the primary outcome at the final state \(K \), decided by a reward function \(y \leftarrow r(\bar{X}_K, \bar{S}_K, u) \) bounded in \([0, 1]\). Values of exogenous variables \(U \) are drawn from the distribution \(P(u) \).

A DTR \(M^* \) induces an observational distribution \(P(\bar{X}_K, \bar{S}_K, y) \). Fig. 1a shows the causal diagram of a DTR with \(K = 2 \) stages of interventions. A policy \(\pi \) for a DTR is a sequence of decision rules \(\pi_K \), where each \(\pi_k(x_k|\bar{S}_k, \bar{X}_{k-1}) \) is a function mapping from the domain of histories \(\bar{S}_k, \bar{X}_{k-1} \) up to stage \(k \) to a distribution over decision \(X_k \). A policy is called deterministic if the above mappings are from histories \(\bar{S}_k, \bar{X}_{k-1} \) to the domain of decision \(X_k \), i.e., \(x_k \leftarrow \pi_k(\bar{S}_k, \bar{X}_{k-1}) \). The collection of possible policies, depending on the domains of the history and decision, define a policy space \(\Pi \).

A policy \(\pi \) defines a sequence of stochastic interventions \(do(X_1 \sim \pi_1(X_1|\bar{S}_1), \ldots, X_K \sim \pi_K(\bar{X}_K|\bar{S}_K, \bar{X}_{K-1})) \), which induce an interventional distribution over variables \(\bar{X}_K, \bar{S}_K, Y \), i.e.:

\[
P_\pi(\bar{X}_K, \bar{S}_K, y) = P_{\bar{X}_K}(y|\bar{S}_K) \prod_{k=0}^{K-1} P_{\bar{X}_k}(s_{k+1}|\bar{S}_k)\pi_{k+1}(x_{k+1}|\bar{S}_{k+1}, \bar{X}_k),
\]

where \(P_{\bar{X}_k}(s_{k+1}|\bar{S}_k) \) is the transition distribution at stage \(k \) and \(P_{\bar{X}_k}(y|\bar{S}_k) \) is the reward distribution over the primary outcome. Fig. 1b describes a DTR under \(K = 2 \) stages of interventions \(do(X_2 \sim \pi_1(X_1|\bar{S}_1), X_2 = \pi_2(X_2|\bar{X}_2, S_1, S_2, X_1)) \). The expected cumulative reward of a policy \(\pi \) in a DTR \(M^* \) is given by \(V_\pi(M^*) = E_\pi[Y] \). We are searching for an optimal policy \(\pi^* \) that maximizes the cumulative reward, i.e., \(\pi^* = \arg\max_{\pi \in \Pi} V_\pi(M^*) \). It is a well-known fact in decision theory that no stochastic policy can improve on the utility of the best deterministic policy (see, e.g., [15, Lem. 2.1]). Thus, in what follows, we will usually consider the policy space \(\Pi \) to be deterministic.
We now introduce a new RL algorithm for optimizing an unknown DTR, which we call UC-DTR. Specifically, UC-DTR computes in Steps 1-3, the empirical estimates \(\hat{P}_t^{(s_k_+1|s_k)} \) of the transitional probabilities \(P_{\bar{a}_k}(s_{k+1}|s_k) \) from samples collected prior to episode \(t \). In Step 4, a set \(M_t \) of plausible DTRs is defined in terms of confidence region around the empirical estimates \(\hat{E}_{\bar{s}_K}^{t}|Y|\bar{s}_K| \) and \(\hat{P}^{(s_{k+1}|s_k)}_{\bar{a}_k} \). This guarantees that the true DTR \(M^* \) is in the set \(M_t \) with high probability. In Step 5, UC-DTR computes the optimal policy \(\pi_t \) of the most optimistic instance \(M_t \) in the family of DTRs \(M_t \) that induces the maximal optimal expected reward. This policy \(\pi_t \) is executed throughout episode \(t \) and new samples \(S_{K_t}^t, X_{K_t}^t, Y^t \) are collected (Step 6).

Our goal is to optimize an unknown DTR \(M^* \) based solely on the domains \(S = \bar{S}_K \), \(X = \bar{X}_K \) and the observational distribution \(P(\bar{X}_K, \bar{S}_K, y) \) (i.e., both \(P, P(u) \) are unknown). The agent (e.g., a physician) learns through repeated experiments of episodes \(t = 1, \ldots, T \). Each episode \(t \) contains a complete DTR process: at stage \(k \), the agent observes the state \(S_t^k \), performs an intervention \(\bar{U}_t^k \) and moves to the state \(S_{k+1}^t \); the primary outcome \(Y^t \) is received at the final stage \(K \). The cumulative regret up to episode \(T \) is defined as \(R(T) = \sum_{t=1}^T (V_{\pi_t}(M^*) - V_{\pi_t}(M_t)) \), i.e., the loss due to the fact that the agent does not always pick the optimal policy \(\pi^* \). We will assess and compare algorithms in terms of their regret \(R(T) \). A desirable asymptotic property is to have \(\lim_{T \to \infty} E[R(T)]/T = 0 \), meaning that the agent eventually converges and finds the optimal policy \(\pi^* \).

2.1 The UC-DTR Algorithm

We now introduce a new RL algorithm for optimizing an unknown DTR, which we call UC-DTR. We will later prove that UC-DTR achieves near-optimal bound on the total regret given only the knowledge of the domains \(S \) and \(X \). Like many other online RL algorithms \([1][2][3]\), UC-DTR follows the principle of optimism under uncertainty to balance exploration and exploitation. The algorithm generally works in phases of model learning, optimistic planning, and strategy execution.

The details of UC-DTR procedure can be found in Alg. 1. The algorithm proceeds in episodes and computes a new strategy \(\pi_t \) from samples \(\{S_{K}^i, X_{K}^i, Y^i\}_{i=1}^{T-1} \) collected so far at the beginning of each episode \(t \). Specifically, UC-DTR computes in Steps 1-3, the empirical estimates \(\hat{E}_{\bar{s}_K}^{t}|Y|\bar{s}_K| \) of the expected reward \(E_{\bar{s}_K}|Y|\bar{s}_K| \), and \(\hat{P}^{(s_{k+1}|s_k)}_{\bar{a}_k} \) of the transitional probabilities \(P_{\bar{a}_k}(s_{k+1}|s_k) \) from experimental samples collected prior to episode \(t \). In Step 4, a set \(M_t \) of plausible DTRs is defined in terms of confidence region around the empirical estimates \(\hat{E}_{\bar{s}_K}^{t}|Y|\bar{s}_K| \) and \(\hat{P}^{(s_{k+1}|s_k)}_{\bar{a}_k} \). This guarantees that the true DTR \(M^* \) is in the set \(M_t \) with high probability. In Step 5, UC-DTR computes the optimal policy \(\pi_t \) of the most optimistic instance \(M_t \) in the family of DTRs \(M_t \) that induces the maximal optimal expected reward. This policy \(\pi_t \) is executed throughout episode \(t \) and new samples \(S_{K}^t, X_{K}^t, Y^t \) are collected (Step 6).

Algorithm 1: UC-DTR

Input: failure tolerance \(\delta \in (0, 1) \).

1: for all episodes \(t = 1, 2, \ldots, T \) do
2: Define event counts \(N_t^{(s_k, \bar{X}_K)} \) and \(N_t^{(s_k, \bar{X}_{k-1})} \) for horizon \(k = 1, \ldots, K \) prior to episode \(t \), respectively, \(\sum_{i=1}^{t-1} I_{S_i = s_k, \bar{X}_K = \bar{x}_k} \) and \(\sum_{i=1}^{t-1} I_{S_i = s_k, \bar{X}_{k-1} = \bar{x}_{k-1}} \). Further, define reward counts \(R_t^{(s_K, \bar{X}_K)} \) prior to episode \(t \) as \(\sum_{i=1}^{t-1} Y_i I_{S_i = s_K, \bar{X}_K = \bar{x}_K} \).
3: Compute estimates \(\hat{P}_t^{(s_k+1|s_k)} \) and \(\hat{E}_{\bar{s}_K}^{t}|Y|\bar{s}_K| \) as follows:
4: Let \(\bar{P}_t^{(s_k+1|s_k)} \) and reward \(E_{\bar{s}_K}|Y|\bar{s}_K| \) are close to estimates \(\hat{P}_t^{(s_k+1|s_k)} \), \(\hat{E}_{\bar{s}_K}^{t}|Y|\bar{s}_K| \), i.e.,
5: Find the optimal policy \(\pi_t \) of an optimistic DTR \(M_t \) in \(M_t \) such that
6: Execute policy \(\pi_t \) for episode \(t \) and observe the samples \(S_{K}^t, X_{K}^t, Y^t \).
7: end for

References:

1. [1]
2. [2]
3. [3]
Finding Optimistic DTRs The Step 5 of UC-DTR tries to find an optimal policy \(\pi \), for an optimistic DTR \(M_t \). While the Bellman equation \([5]\) allows one to optimize a fixed DTR, we need to find a DTR \(M_t \) that gives the maximal optimal reward among all plausible DTRs in \(M_t \), given by Eq. (5).

We now introduce a method that extends standard dynamic programming planners \([5]\) to solve this problem. We first combine all DTRs in \(M_t \) to get an extended DTR \(M_+ \). That is, we consider a DTR \(M_+ \) with continuous decision space \(\tilde{X}^+ = \tilde{X}^+_K \), where for each horizon \(k \), each action \(\tilde{x}_k \in \tilde{X}^+_k \), and each admissible transition probabilities \(P_{\tilde{x}_k}(s_{k+1} | \tilde{s}_k) \) according to Eq. (3), there is an action in \(\tilde{X}^+_k \) inducing the same probabilities \(P_{\tilde{x}_k}(s_{k+1} | \tilde{s}_k) \). Similar arguments also apply to the expected reward \(E_{\tilde{x}_k}[Y | \tilde{s}_k] \). Then, for each policy \(\pi_+ \), there is a DTR \(M_t \in M_t \) and a policy \(\pi_t \in \Pi \).

Let \(\Delta = V^*(\tilde{s}_k, \bar{\tilde{x}}_{k-1}) \) denote the expected reward between the optimal policy \(\pi \) and a set of sub-optimal policies \(\Pi \). The inner maximum in Eq. (5) is a linear program (LP) over the convex polytope \(P_k \) (or \(R \)) and its gap \(\Delta \) is bounded by \(\sqrt{2K |\tilde{X}|T} \).

1. Fix a \(\delta \in (0, 1) \). With probability (w.p.) of at least \(1 - \delta \), it holds for any \(T > 1 \), the regret of UC-DTR with parameter \(\delta \) is bounded by

\[
R(T) \leq 12K \sqrt{|\tilde{S}| |\tilde{X}| T \log(2K |\tilde{S}| |\tilde{X}| T/\delta)} + 4K \sqrt{T \log(2T/\delta)}.
\]

It is also possible to obtain the instance-dependent bound on the expected regret. Let \(\Pi^+ \) denote a set of sub-optimal policies \(\{ \pi \in \Pi : V_{\pi}(M^*) < V_{\pi^*}(M^*) \} \). For any \(\pi \in \Pi^+ \), let its gap in expected reward between the optimal policy \(\pi^* \). be \(\Delta_{\pi} = V_{\pi^*}(M^*) - V_{\pi}(M^*) \). We next derive the gap-dependent logarithmic bound on the expected regret of UC-DTR after \(T \) steps.

2. For any \(T \geq 1 \), with parameter \(\delta = \frac{1}{T} \), the expected regret of UC-DTR is bounded by

\[
E[R(T)] \leq \max_{\pi \in \Pi^+} \left\{ \frac{32K^2 |\tilde{S}| |\tilde{X}| \log(T)}{\Delta_{\pi}} + \frac{4}{\Delta_{\pi}^2} + 1 \right\}.
\]

Since Eq. (7) is a decreasing function relative to the gap \(\Delta_{\pi} \), the maximum of the regret in Thm. [2] is achieved with the second best policy \(\pi^* = \arg \min_{\pi \in \Pi^+} \Delta_{\pi} \). We also provide a corresponding lower bound on the expected regret of any algorithm.

3. For any algorithm \(A \), any natural numbers \(K \geq 1 \), and \(|\tilde{S}| \geq 2 \), \(|\tilde{X}| \geq 2 \) for any \(k \in \{1, \ldots, K \} \), there is a DTR \(M \) with horizon \(K \), state domains \(\tilde{S} \) and action domains \(\tilde{X} \), such that the expected regret of \(A \) after \(T \geq |\tilde{S}| |\tilde{X}| \) episodes is as least

\[
E[R(T)] \geq 0.05 \sqrt{|\tilde{S}| |\tilde{X}| T}.
\]

Thm. [3] implies that for any DTR instance, the cumulative regret of \(\Omega(\sqrt{|\tilde{S}| |\tilde{X}| T}) \) is inevitable. The regret upper bound \(O(K \sqrt{|\tilde{S}| |\tilde{X}| T}) \) in Thm. [1] is close to the lower bound \(\Omega(\sqrt{|\tilde{S}| |\tilde{X}| T}) \) in Thm. [3] which means that UC-DTR is near-optimal provided with only the domains of state \(\tilde{S} \) and actions \(\tilde{X} \).

\(^2 \tilde{O}(\cdot) \) is similar to \(O(\cdot) \) but ignores log-terms, i.e., \(f = \tilde{O}(g) \) if and only if \(\exists k \), \(f = O(g \log^k(g)) \).
3 Learning from Confounded Observations

The results presented so far (Thms. 1 to 5) establish the dimension of the state-action domain $|S| |X|$ as the an important parameter for the information complexity of online learning in DTRs. When domains $S \times X$ are high-dimensional, the cumulative regret will be significant for any online algorithm, no matter how sophisticated it might be. This observation suggests that we should explore other reasonable assumptions to address the issues of high-dimensional domains.

A natural approach is to utilize the abundant observational data, which could be obtained by passively observing other agents behaving in the environment. Despite all its power, the UC-DTR algorithm does not make use of any knowledge in the the observational distribution $P(\tilde{s}_K, \tilde{x}_K, y)$. For the remainder of this paper, we will present and study an efficient procedure to incorporate observational samples of $P(\tilde{s}_K, \tilde{x}_K, y)$, so that the performance of online learners could be improved.

When states \tilde{S}_K satisfy the sequential backdoor criterion [24] with respect to treatments \tilde{X}_K and the primary outcome Y, one could identify the transition probabilities $P_{\tilde{x}}(s_{k+1}|\tilde{s}_k)$ and expected reward $E_{\tilde{x}}[Y|\tilde{s}_k]$ from $P(\tilde{s}_K, \tilde{x}_K, y)$. The optimal policy is thus solvable using the standard off-policy learning methods such as Q-learning [31, 20]. However, issues of non-identifiability arise in the general settings where the sequential backdoor does not hold (e.g., see Fig. 1a).

Theorem 4. Given $P(\tilde{s}_K, \tilde{x}_K, y) > 0$, there exists DTRs M_1, M_2 such that $P^{M_1}(\tilde{s}_K, \tilde{x}_K, y) = P^{M_2}(\tilde{s}_K, \tilde{x}_K, y) = P(\tilde{s}_K, \tilde{x}_K, y)$ while $P_{\tilde{x}}^{M_1}(\tilde{s}_K, y) \neq P_{\tilde{x}}^{M_2}(\tilde{s}_K, y)$.

Thm. 4 is stronger than the standard non-identifiability results (e.g., [14, Thm. 1]). It shows that given any observational distribution $P(\tilde{s}_K, \tilde{x}_K, y)$, one to construct two DTRs both compatible with $P(\tilde{s}_K, \tilde{x}_K, y)$, but disagrees in the interventional probabilities $P_{\tilde{x}}(\tilde{s}_K, y)$.

3.1 Bounds and Partial Identification in DTRs

In this section, we consider a partial identification task in DTRs which bounds parameters of $P_{\tilde{x}}(s_{k+1}|\tilde{s}_k)$ and $E_{\tilde{x}}[Y|\tilde{s}_k]$ from the observational distribution $P(\tilde{s}_K, \tilde{x}_K, y)$. Our first result shows that the gap between causal quantities $P_{\tilde{x}}(\tilde{s}_k+1)$ and $P_{\tilde{x}}(\tilde{s}_k)$ in a DTR is bounded by the gap between the corresponding observational distributions $P(\tilde{s}_{k+1}, \tilde{x}_k)$ and $P(\tilde{s}_k, \tilde{x}_k)$.

Lemma 1. For a DTR, given $P(\tilde{s}_K, \tilde{x}_K, y)$, for any $k = 1, \ldots, K - 1$,

$$P_{\tilde{x}}(\tilde{s}_{k+1}) - P_{\tilde{x}}(\tilde{s}_k) \leq P(\tilde{s}_{k+1}, \tilde{x}_k) - P(\tilde{s}_k, \tilde{x}_k).$$

Lem. 1 allows one to derive informative bounds of transition probabilities $P_{\tilde{x}}(s_{k+1}|\tilde{s}_k)$ in a DTR, which are consistently estimable from the observational data $P(\tilde{s}_K, \tilde{x}_K)$.

Theorem 5. For a DTR, given $P(\tilde{s}_K, \tilde{x}_K, y) > 0$, for any $k = 1, \ldots, K - 1$,

$$P(\tilde{s}_{k+1}, \tilde{x}_k) \leq P_{\tilde{x}}(s_{k+1}|\tilde{s}_k) \leq \frac{\Gamma(\tilde{s}_{k+1}, \tilde{x}_k)}{\Gamma(\tilde{s}_k, \tilde{x}_k)},$$

where $\Gamma(\tilde{s}_{k+1}, \tilde{x}_k) = P(\tilde{s}_{k+1}, \tilde{x}_k) - P(\tilde{s}_k, \tilde{x}_k) + \Gamma(\tilde{s}_k, \tilde{x}_{k-1})$ and $\Gamma(s_1) = P(s_1)$.

Bounds in Thm. 5 exploit the sequential functional relationships among states and treatments in the underlying DTR, which improve over the best-known bounds reported in [17, 39]. Let $[a_{\tilde{x}}, \tilde{s}_k(s_{k+1}), b_{\tilde{x}}, \tilde{s}_k(s_{k+1})]$ denote the bound over $P_{\tilde{x}}(s_{k+1}|\tilde{s}_k)$ given by Eq. (10). We next show that $P_{\tilde{x}}(s_{k+1}|\tilde{s}_k) \in [a_{\tilde{x}}, \tilde{s}_k(s_{k+1}), b_{\tilde{x}}, \tilde{s}_k(s_{k+1})]$ is indeed optimal without additional assumption.

Theorem 6. Given $P(\tilde{s}_K, \tilde{x}_K, y) > 0$, for any $k \in \{1, \ldots, K - 1\}$, there exists DTRs M_1, M_2 such that $P^{M_1}(\tilde{s}_K, \tilde{x}_K, y) = P^{M_2}(\tilde{s}_K, \tilde{x}_K, y) = P(\tilde{s}_K, \tilde{x}_K, y)$ while $P_{\tilde{x}}^{M_1}(\tilde{s}_k+1|\tilde{s}_k) = a_{\tilde{x}}, \tilde{s}_k(s_{k+1}), P_{\tilde{x}}^{M_2}(s_{k+1}|\tilde{s}_k) = b_{\tilde{x}}, \tilde{s}_k(s_{k+1})$.

Thm. 6 ensures the optimality of Thm. 5. Suppose there exists a bound $[a_{\tilde{x}}, \tilde{s}_k(s_{k+1}), b_{\tilde{x}}, \tilde{s}_k(s_{k+1})]$ strictly contained in $[a_{\tilde{x}}, \tilde{s}_k(s_{k+1}), b_{\tilde{x}}, \tilde{s}_k(s_{k+1})]$. By Thm. 6, we could always find DTRs M_1, M_2 that are compatible with the observational data $P(\tilde{s}_K, \tilde{x}_K, y)$ while their transition probabilities $P_{\tilde{x}}^{M_1}(s_{k+1}|\tilde{s}_k)$ lie outside of the bound $[a_{\tilde{x}}, \tilde{s}_k(s_{k+1}), b_{\tilde{x}}, \tilde{s}_k(s_{k+1})]$, which is a contradiction.

As a corollary, one could apply methods of Lem. 1 and Thm. 5 to bound expected rewards $E_{\tilde{x}}[Y|\tilde{s}_k]$ from $P(\tilde{s}_K, \tilde{x}_K, y)$. The optimality of the derived bounds follows immediately after Thm. 6.
We denote by $Causal$ Algorithm 2:

The bounds developed so far are functions of the observational distribution $UC-DTR$ Eq. (6) if $T < T/\delta$. It is immediate from Thm. 7 that the regret bound in Eq. (15) is smaller than the bound given by π obtained by solving LPs defined in Eq. (5) subject to additional causal constraints Eqs. (13) and (14).

The results of large-deviation theory are thus applicable to control the uncertainties due to finite samples.

For $k = 1, \ldots, K - 1$, let C_k denote a set of bounds over transition probabilities $P_{\bar{x}_k}(s_{k+1}|\bar{s}_k)$, i.e.,

$C_k = \{\forall \bar{s}_{k+1}, \bar{x}_k : P_{\bar{x}_k}(s_{k+1}|\bar{s}_k) \in [a_{\bar{x}_k, \bar{s}_k}(s_{k+1}), b_{\bar{x}_k, \bar{s}_k}(s_{k+1})]\}$.

Similarly, let C_K denote a set of bounds over the conditional expected reward $E_{\bar{x}_K}[Y|\bar{s}_K]$, i.e.,

$C_K = \{\forall \bar{s}_K, \bar{x}_K : E_{\bar{x}_K}[Y|\bar{s}_K] \in [a_{\bar{x}_K, \bar{s}_K}, b_{\bar{x}_K, \bar{s}_K}]\}$.

We denote by C a set of bounds $\{C_1, \ldots, C_K\}$ on the system dynamics of the DTR, called causal bounds. Our procedure Causal UC-DTR (for short, UC'-DTR) is summarized in Alg. 2. UC'-DTR is similar to the original UC-DTR but exploits causal bounds C. It maintains a set of possible DTRs M^c compatible with the causal bounds C (Step 1). Before each episode t, it computes the optimal policy π_t of an optimistic DTR M_t in $M_t^c = M_t \cap M^c$ (Step 3). Similar to UC-DTR, π_t could be obtained by solving LPs defined in Eq. (5) subject to additional causal constraints Eqs. (13) and (14).

We next analyze asymptotic properties of UC'-DTR, showing that it consistently outperforms UC-DTR. Let $\|C_k\|_1$ denote the maximal L1 norm of any parameter in C_k, i.e., for any $k = 1, \ldots, K - 1$,

$\|C_k\|_1 = \max_{\bar{x}_k, \bar{s}_k} \sum_{s_{k+1}} |a_{\bar{x}_k, \bar{s}_k}(s_{k+1}) - b_{\bar{x}_k, \bar{s}_k}(s_{k+1})|$, \quad and $\|C_K\|_1 = \max_{\bar{x}_K, \bar{s}_K} \left|a_{\bar{x}_K, \bar{s}_K} - b_{\bar{x}_K, \bar{s}_K}\right|.$

Further, let $\|C\|_1 = \sum_{k=1}^{K} \|C_k\|_1$. The total regret of UC'-DTR after T steps is bounded as follows.

Theorem 7. Fix a $\delta \in (0, 1)$. With probability of at least $1 - \delta$, it holds for any $T > 1$, the regret of UC'-DTR with parameter δ and causal bounds C is bounded by

$R(T) \leq \min \left\{12K\sqrt{\max|S||X'|T\log(2K|S|X'|T/\delta)}, \|C\|_1, T\right\} + 4K\sqrt{T\log(2T/\delta)}.$

(15)

It is immediate from Thm. 7 that the regret bound in Eq. (15) is smaller than the bound given by Eq. (6) if $T < 12^2|S||X'|\log(2K|S|X'|T/\delta)/\|C\|_1^2$. This means that UC'-DTR has a head start over UC-DTR when the causal bounds C are informative, i.e., the dimension $\|C\|_1$ is small.
We could also witness the improvements of causal bounds on the total expected regret. Let Π^C be the set of sub-optimal policies that their maximal expected rewards over instances in M^c are no less than the true optimal value $V^*_C(M^*)$, i.e., $\Pi^C = \{\pi \in \Pi^- : \max_{M \in M^c} V^*_C(M) \geq V^*_C(M^*)\}$. The following is the instance-dependent bound on the total regret of $UC^-\text{-DTR}$ after T steps.

Theorem 8. For any $T \geq 1$, with parameter $\delta = \frac{1}{K}$ and causal bounds C, the expected regret of $UC^-\text{-DTR}$ is bounded by

$$E[R(T)] \leq \max_{\pi \in \Pi^C} \left\{ \frac{32K^2|\mathcal{S}|\log(T)}{\Delta^*_C} + \frac{32}{\Delta^*_C} + \frac{4}{\Delta^*_C} \right\} + 1. \quad (16)$$

Since $\Pi^C \subseteq \Pi^-$, it follows that the regret bound in Thm. 8 is smaller than or equal to Eq. (7), i.e., $UC^-\text{-DTR}$ consistently dominates UC-DR in terms of the performance. For instance, in a multi-armed bandit model (i.e., 1-stage DTR with $S_1 = \emptyset$) with optimal reward μ^*, the regret of $UC^-\text{-DTR}$ is $O(\log(T)/\Delta_x)$ where Δ_x is the smallest gap among sub-optimal arms x satisfying $b_x \geq \mu^*$.

4 Experiments

We demonstrate our algorithms on several dynamic treatment regimes, including randomly generated DTRs, and the survival model in the context of multi-stage cancer treatment. We found that our algorithms could efficiently find the optimal policy; the observational data typically improve the convergence rate of online RL learners despite the confounding bias.

In all experiments, we test sequentially randomized trials (rand), UC-DTR algorithm (uc-dtr) and the causal UC-DTR (uc'-dtr) with causal bounds derived from 1×10^5 confounded observational samples. Each experiment lasts for $T = 1.1 \times 10^4$ episodes. The parameter $\delta = \frac{1}{KT}$ for uc-dtr and uc'-dtr where K is the total stages of interventions. For all algorithms, we measure their cumulative regret over 200 repetitions. We refer readers to the complete technical report [40, Appendix II] for the more details on the experimental setup.

Random DTRs

We generate 200 random instances and observational distributions of the DTR described in Fig. 1. We assume treatments X_1, X_2, states S_1, S_2 and primary outcome Y are all binary variables; values of each variable are decided by their corresponding unobserved counterfacultals $S_{2x_1}, X_{2x_2}, Y_{x_2}$ following definitions in [13, 9]. The probabilities of the joint distribution $P(s_1, x_1, s_2x_1, x_2x_2, y_{x_2})$ are drawn randomly over $[0, 1]$. The cumulative regrets average among all random DTRs are reported in Fig. 2a. We find that online methods (uc-dtr, uc'-dtr) dominate randomized assignments (rand); RL learners that leverage causal bounds (uc'-dtr) consistently dominates learners that do not (uc-dtr). Fig. 2b reports the relative improvement in total regrets of uc'-dtr compared to uc-dtr among 200 instances. uc'-dtr outperforms uc-dtr in over 80% of generated DTRs. This suggests that causal bounds derived from the observational data are beneficial in most instances.

Cancer Treatment

We test the survival model of the two-stage clinical trial conducted by the Cancer and Leukemia Group B [16, 37]. Protocol 8923 was a double-blind, placebo controlled two-stage trial reported by [29] examining the effects of infusions of granulocyte-macrophage colony-stimulating factor (GM-CSF) after initial chemotherapy in patients with acute myelogenous
leukemia (AML). Standard chemotherapy for AML could place patients at increased risk of death due to infection or bleeding-related complications. GM-CSF administered after chemotherapy might assist patient recovery, thus reducing the number of deaths due to such complications. Patients were randomized initially to GM-CSF or placebo following standard chemotherapy. Later, patients meeting the criteria of complete remission and consenting to further participation were offered a second randomization to one of two intensification treatments.

Fig. 1a describes the DTR of this two-stage trail. X_1 represents the initial GM-CSF administration and X_2 represents the intensification treatment; the initial state $S_1 = \emptyset$ and S_2 indicates the complete remission after the first treatment; the primary outcome Y indicates the survival of patients at the time of recording. We generate observational samples using age of patients as UCs U. The cumulative regrets average among all random DTRs are reported in Fig. 2b. We find that rand performs worst among all strategies; uc-dtr finds the optimal policy with sub-linear regrets. Interestingly, uc'~dtr converges almost immediately, suggesting that causal bounds derived from confounded observations could significantly improve the performance of online learners.

5 Conclusion

In this paper, we investigated the online reinforcement learning problem for selecting the optimal DTR provided with abundant, yet imperfect observations made about the underlying environment. We first presented an online RL algorithm with near-optimal regret bounds in DTRs solely based on the knowledge about state-action domains. We further derived causal bounds about the system dynamics in DTRs from the observational data. These bounds could be incorporated in a simple, yet principled way to improve the performance of online RL learners. In today’s healthcare, for example, the growing use of mobile devices opens new opportunities in continuous monitoring of patients’ conditions and just-in-time interventions. We believe that our results constitute a significant step towards the development of a more principled and robust science of precision medicine.

Acknowledgments

This research is supported in parts by grants from IBM Research, Adobe Research, NSF IIS-1704352, and IIS-1750807 (CAREER).

References

