NIPS Proceedingsβ

Planning in entropy-regularized Markov decision processes and games

Part of: Advances in Neural Information Processing Systems 32 (NIPS 2019) pre-proceedings

[PDF] [BibTeX] [Supplemental]

Authors

Conference Event Type: Poster

Abstract

We propose SmoothCruiser, a new planning algorithm for estimating the value function in entropy-regularized Markov decision processes and two-player games, given a generative model of the SmoothCruiser. SmoothCruiser makes use of the smoothness of the Bellman operator promoted by the regularization to achieve problem-independent sample complexity of order $\tilde{\mathcal{O}}(1/\epsilon^4)$ for a desired accuracy $\epsilon$, whereas for non-regularized settings there are no known algorithms with guaranteed polynomial sample complexity in the worst case.