Dying Experts: Efficient Algorithms with Optimal Regret Bounds

Hamid Shayestehmanesh*
Department of Computer Science
University of Victoria

Sajjad Azami*
Department of Computer Science
University of Victoria

Nishant A. Mehta
Department of Computer Science
University of Victoria

{hamidshayestehmanesh, sajjadazami, nmehta}@uvic.ca

Abstract

We study a variant of decision-theoretic online learning in which the set of experts that are available to Learner can shrink over time. This is a restricted version of the well-studied sleeping experts problem, itself a generalization of the fundamental game of prediction with expert advice. Similar to many works in this direction, our benchmark is the ranking regret. Various results suggest that achieving optimal regret in the fully adversarial sleeping experts problem is computationally hard. This motivates our relaxation where any expert that goes to sleep will never again wake up. We call this setting “dying experts” and study it in two different cases: the case where the learner knows the order in which the experts will die and the case where the learner does not. In both cases, we provide matching upper and lower bounds on the ranking regret in the fully adversarial setting. Furthermore, we present new, computationally efficient algorithms that obtain our optimal upper bounds.

1 Introduction

Decision-theoretic online learning (DTOL) [13, 20, 21, 6] is a sequential game between a learning agent (hereafter called Learner) and Nature. In each round, Learner plays a probability distribution over a fixed set of experts and suffers loss accordingly. However, in wide range of applications, this “fixed” set of actions shrinks as the game goes on. One way this can happen is because experts either get disqualified or expire over time; a key scenario of contemporary relevance is in contexts where experts that discriminate are prohibited from being used due to existing (or emerging) anti-discrimination laws. Two prime examples are college admissions and deciding whether incarcerated individuals should be granted parole; here the agent may rely on predictions from a set of experts in order to make decisions, and naturally experts detected to be discriminating against certain groups should not be played anymore. However, the standard DTOL setting does not directly adapt to this case, i.e., for a given round it does not make sense nor may it even be possible to compare Learner’s performance to an expert or action that is no longer available.

Motivated by cases where the set of experts can change, a reasonable benchmark is the ranking regret [12, 9], for which Learner competes with the best ordering of the actions (see (1) in Section 2 for a formal definition). The situation where the set of available experts can change in each round is known as the sleeping experts setting, and unfortunately, it appears to be computationally hard to

*equal contribution

obtain a no-regret algorithm in the case of adversarial payoffs (losses in our setting) and adversarial availability of experts [10]. This motivates the question of whether the optimal regret bounds can be achieved efficiently for the case where the set of experts can only shrink, which we will refer to as the “dying experts” setting. Applying the results of [12] to the dying experts problem only gives \(O(\sqrt{TK \log K}) \) regret, for \(K \) experts and \(T \) rounds, and their strategy is computationally inefficient.

In more detail, the strategy in [12] is to define a permutation expert (our terminology) that is identified by an ordering of experts, where a permutation expert’s strategy is to play the first awake expert in the ordering. They then run Hedge [6] on the set of all possible permutation experts over \(K \) experts. Although this strategy competes with the best ordering, the per-round computation of running Hedge on \(K! \) experts is \(O(K^K) \) if naïvely implemented, and the results of [10] suggest that no efficient algorithm — one that uses computation \(\text{poly}(K) \) per round — can obtain regret that simultaneously is \(o(T) \) and \(\text{poly}(K) \). However, in the dying experts setting, we show that many of these \(K! \) orderings are redundant and only \(O(2^K) \) of them are “effective”. The notion of effective experts (formally defined in Section 3) is used to refer to a minimal set of orderings such that each ordering in the set will behave uniquely in hindsight. The behavior of an ordering is defined as how it uses the initial experts in its predictions over \(T \) rounds. Interestingly, it turns out that this structure also allows for an efficient implementation of Hedge which, as we show, obtains optimal regret in the dying experts setting. The key idea that enables an efficient implementation is as follows. Our algorithms group orderings with identical behavior into one group, where there can be at most \(K \) groups at each round. When an expert dies, the orderings in one of the groups are forced to predict differently and therefore have to redistribute to the other groups. This splitting and rejoining behavior occurs in a fixed pattern which enables us to efficiently keep track of the weight associated with each group.

In certain scenarios, Learner might be aware of the order in which the experts will become unavailable. For example, in online advertising, an ad broker has contracts with their providers and these contracts may expire in an order known to Learner. Therefore, we will study the problem in two different settings: when Learner is aware of this order and when it is not.

Contributions. Our first main result is an upper bound on the number of effective experts (Theorem 3.1); this result will be used for our regret upper bound in the known order case. Also, in preparation for our lower bound results, we prove a fully non-asymptotic lower bound on the minimax regret for DTOL (Theorem 4.1). Our main lower bounds contributions are minimax lower bounds for both the unknown and known order of dying cases (Theorems 4.2 and 4.4). In addition, we provide strategies to achieve optimal upper bounds for unknown and known order of dying (Theorems 4.3 and 4.5 respectively), along with efficient algorithms for each case. This is in particular interesting since, in the framework of sleeping experts, the results of [10] suggest that no-regret learning is computationally hard, but we show that it is efficiently achievable in the restricted problem. Finally, in Section 5.3, we show how to generalize our algorithms to other algorithms with adaptive learning rates, either adapting to unknown \(T \) or achieving far greater forms of adaptivity like in AdaHedge and FlipFlop [5].

All formal proofs not found in the main text can be found in the appendix.

2 Background and related work

The DTOL setting [6] is a variant of prediction with expert advice [13, 20, 21] in which Learner receives an example \(x_t \) in round \(t \) and plays a probability distribution \(p_t \) over \(K \) actions. Nature then reveals a loss vector \(\ell_t \) that indicates the loss for each expert. Finally, Learner suffers a loss \(\ell_t = p_t : \ell_t = \sum_{i=1}^K p_{i,t} \ell_{t,i} \).

In the dying experts problem, we assume that the set of experts can only shrink. More formally, for the set of experts \(E = \{e_1, e_2, \ldots, e_K\} \), at each round \(t \), Nature chooses a non-empty set of experts \(E_t \) to be available such that \(E_{t+1} \subseteq E_t \), for all \(t \in \{1, \ldots, T-1\} \). In other words, in some rounds Nature sets some experts to sleep, and they will never be available again. Similar to [12, 11, 10], we adopt the ranking regret as our notion of regret. Before proceeding to the definition of ranking regret, let us define \(\pi \) to be an ordering over the set of initial experts \(E \). We use the notion of orderings and permutation experts interchangeably. Learner can now predict using \(\pi \in \Pi \), where \(\Pi \) is the set of all the orderings. Also, denote by \(\sigma^t(\pi) \) the first alive expert of ordering \(\pi \) in round \(t \); expert \(\sigma^t(\pi) \) is the action that will be played by \(\pi \). The cumulative loss of an ordering \(\pi \) with respect to the available
experts E^t_a is the sum of the losses of $\sigma^t(\pi)$ at each round. We can now define the ranking regret:

$$R_{11}(1, T) = \sum_{t=1}^{T} \hat{\ell}_t - \min_{\pi \in \Pi} \sum_{t=1}^{T} \ell_{\sigma^t(\pi), t}.$$ \hspace{1cm} (1)

Since we will use the notion of classical regret in our proofs, we also provide its formal definition:

$$R_{E}(1, T) = \sum_{t=1}^{T} \hat{\ell}_t - \min_{i \in [K]} \sum_{t=1}^{T} \ell_{i, t}. \hspace{1cm} (2)$$

We use the convention that the subcript of a regret notion R represents the set of experts against which we compare Learner’s performance. Also, the argument in parentheses represents the set of rounds in the game. For example, $R_{11}(1, T)$ represents the regret over rounds 1 to T with the comparator set being all permutation experts Π. Also, we assume that $t_{i, t} \in [0, 1]$ for all $i \in [K], t \in [T]$.

Similar to the definition of E^t_a, let $E^t_d := E \setminus E^t_a$ be the set of dead experts at the start of round t. We refer to a round as a “night” if any expert becomes unavailable on the next round. A “day” is defined as a continuous subset of rounds where the subset starts with a round after a night and ends with a night. As an example, if any expert become unavailable at the beginning of round t, we refer to round $t - 1$ as a night (and we say the expert dies on that night) and the set of rounds $\{t, t + 1, \ldots, t'\}$ as a day, where t' is the next night. We denote by m the number of nights throughout a game of T rounds.

Related work. The papers [7] and [1] initiated the line of work on the sleeping experts setting. These works were followed by [2], which considered a different notion of regret and a variety of different assumptions. In [7], the comparator set is the set of all probability vectors over K experts, while we compare Learner’s performance to the performance of the best ordering. In particular, the problem considered in [7] aims to compare Learner’s performance to the best mixture of actions, which also includes our comparator set (orderings). However, in order to recover an ordering as we define, one needs to assign very small probabilities to all experts except for one (the first alive which also includes our comparator set (orderings). However, in order to recover an ordering as while we compare Learner’s performance to the performance of the best ordering. In particular, the argument in parentheses represents the set of rounds in

3 Number of effective experts in dying experts setting

In this section, we consider the number of effective permutation experts among the set of all possible orderings of initial experts. The idea behind this is that, given the structure in dying experts, not
all the orderings will behave uniquely in hindsight. Formally, the behavior of \(\pi \) is a sequence of predictions \(\langle \sigma^{1}(\pi), \sigma^{2}(\pi), \ldots, \sigma^{T}(\pi) \rangle \). This means that the behaviors of two permutation experts \(\pi \) and \(\pi' \) are the same if they use the same initial experts in every round. We define the set of effective orderings \(\mathcal{E} \subseteq \Pi \) to be a set such that, for each unique behavior of orderings, there only exists one ordering in \(\mathcal{E} \).

To clarify the definition of unique behavior, suppose initial expert \(e_1 \) is always awake. Then two orderings \(\pi_1 = (e_1, e_2, \ldots) \) and \(\pi_2 = (e_1, e_3, \ldots) \) will behave the same over all the rounds, making one of them redundant. Let us clarify that behavior is not defined based on losses, e.g., if \(\pi_1 = (e_i, \ldots) \) and \(\pi_2 = (e_j, \ldots) \) where \(i \neq j \) both suffer identical losses over all the rounds (i.e., their performances are equal) while using different original experts, then they are not considered redundant and hence both of them are said to be effective.

Let \(d_i \) be the number of experts dying on the \(i \)th night. Denote by \(A \) the number of experts that will always be awake, so that \(A = K - \sum_{i=1}^{m} d_i \). We are now ready to find the cardinality of set \(\mathcal{E} \).

Theorem 3.1. In the dying experts setting, for \(K \) initial experts and \(m \) nights, the number of effective orderings in \(\Pi \) is \(f(\{d_1, d_2, \ldots, d_m\}, A) = A \cdot \prod_{s=1}^{m}(d_s + 1) \).

In the special case where no expert dies (\(m = 0 \)), we use the convention that the (empty) product evaluates to 1 and hence \(f(\{\}, A) = A \). We mainly care about \(|\mathcal{E}| \) as we use it to derive our upper bounds; hence, we should find the maximum value of \(f \). We can consider the maximum value of \(f \) in three regimes.

1. In the case of a fixed number of nights \(m \) and fixed \(A \), the function \(f \) is maximized by equally spreading the dying experts across the nights. As the number of dying experts might not be divisible by the number of nights, some of the nights will get one more expert than the others. Formally, the maximum value is \((\lceil \frac{D}{m} \rceil D \mod m \cdot \lfloor \frac{D}{m} \rfloor m \mod D \cdot A) \), where \(D = K - A + m \) and \(K - A \leq m \).

2. In the case of a fixed number of dying experts (fixed \(A \), the maximum value of \(f \) is \((2^{K-A} \cdot A) \) which occurs when one expert dies on each night. The following is a brief explanation on how to get this result. Denote by \(B = (d_1, d_2, \ldots, d_b) \) a sequence of numbers of dying experts where more than one expert dies on some night and \(B \) maximizes \(f \) (for fixed \(A \), so that \(F = f(\{d_1, d_2, \ldots, d_b\}, A) \). Without loss of generality, assume that \(d_1 > 1 \). Split the first night into \(d_1 \) days where one expert dies at the end of each day (and consequently each of those days becomes a night). Now \(F' = f(\{1, 1, \ldots, 1, d_2, \ldots, d_b\}, A) \) where 1 is repeated \(d_1 \) times. If \(d_1 > 1 \) then \(F' = F \cdot 2^{d_1}/(d_1 + 1) > F \). We see that by splitting the nights we can achieve a larger effective set.

3. In the case of a fixed number of nights \(m \), similar to the previous cases, the maximum value is obtained when each night has equal impact on the value of \(f \), i.e., when \(A = d_1 + 1 = d_2 + 1 = \cdots = d_m + 1 \); however, it might not be possible to distribute the experts in a way to get this, in which case we should make the allocation \(\{A, d_1 + 1, d_2 + 1, \ldots, d_m + 1\} \) as uniform as possible.

By looking at cases 2 and 3, we see that by increasing \(m \) and the number of dying experts, we can increase \(f \); thus, the maximum value of \(f \) with no restriction is \(2^{K-1} \) and is achieved when \(m = K - 1 \) and \(A = 1 \).

4 **Regret bounds for known and unknown order of dying**

In this section, we provide lower and upper bounds for the cases of unknown and known order of dying. In order to prove the lower bounds, we need a non-asymptotic minimax lower bound for the DTOL framework, i.e., one which holds for a finite number of experts \(K \) and finite \(T \). During the preparation of the final version of this work, we were made aware of a result of Orabona and Pál (see Theorem 8 of [16]) that does give such a bound. However, for completeness, we present a different fully non-asymptotic result that we independently developed; this result is stated in a simpler form and admits a short proof (though we admit that it builds upon heavy machinery). We then will prove matching upper bounds for both cases of unknown and known order of dying.
4.1 Fully non-asymptotic minimax lower bound for DTOL

We analyze lower bounds on the minimax regret in the DTOL game with \(K \) experts and \(T \) rounds. We assume that all losses are in the interval \([0, 1]\). Let \(\Delta_K := \Delta([K]) \) denote the simplex over \(K \) outcomes. The minimax regret is defined as

\[
\inf_{p_1 \in \Delta_K} \sup_{\ell_1 \in [0,1]^K} \ldots \inf_{p_T \in \Delta_K} \sup_{\ell_T \in [0,1]^K} \left\{ \sum_{t=1}^T p_t \cdot \ell_t - \min_{j \in [K]} \sum_{t=1}^T \ell_{j,t} \right\}.
\]

Theorem 4.1. For a universal constant \(L \), the minimax regret (3) is lower bounded by

\[
\frac{1}{L} \min \left\{ \sqrt{T/2 \log K}, T \right\}.
\]

The proof (in the appendix) begins similarly to the proof of the often-cited Theorem 3.7 of [3], but it departs at the stage of lower bounding the Rademacher sum; we accomplish this lower bound by invoking Talagrand’s Sudakov minoration for Bernoulli processes [17, 18].

4.2 Unknown order of dying

For the case where Learner is not aware of the order in which the experts die, we prove a lower bound of \(\Omega(\sqrt{mT \log K}) \). Given that we have \(E_{mT+1} \subseteq E_{mT} \), the construction for the lower bound of [12] cannot be applied to our case. In other words, our adversary is much weaker than the one in [12], but, surprisingly, we show that the previous lower bound still holds (by setting \(m = K \)) even with the weaker adversary. We then analyze a simple strategy to achieve a matching upper bound.

In this section, we further assume that \(\sqrt{T/2 \log K} < T \) for every \(T \) and \(K \) so that there is hope to achieve regret that is sublinear with respect to \(T \). We now present our lower bound on the regret for the case of unknown order of dying.

Theorem 4.2. When the order of dying is unknown, the minimax regret is \(\Omega(\sqrt{mT \log K}) \).

Proof Sketch. We construct a scenario where each day is a game decoupled from the previous ones. This means that the algorithm will be forced to have no prior information about the experts at the beginning of each day. First, partition the \(T \) rounds into \(m + 1 \) days of equal length. The days are split into two halves. On the first half, each expert suffers loss drawn i.i.d. from a Bernoulli distribution with \(p = 1/2 \). At the end of the first half of the day, we choose the expert with the lowest cumulative loss until that round, and that expert will suffer no loss on the second half. For any other expert \(e_i \), we use the loss \(\ell_{i,t}^{(1)} \) of \(e_i \) on the \(t \)th round of the first half to define the loss \(\ell_{i,t}^{(2)} \) of \(e_i \) on the \(t \)th round of the second half; specifically, we choose the setting \(\ell_{i,t}^{(2)} := 1 - \ell_{i,t}^{(1)} \). We show that the ranking regret of the set of orderings over \(T \) rounds is obtained by summing the classical regrets of each day over the set of days.

A natural strategy in the case of unknown dying order is to run Hedge over the set of initial experts \(E \) and, after each night, reset the algorithm. We will refer to this strategy as “Resetting-Hedge”. Theorem 4.3 gives an upper bound on regret of Resetting-Hedge.

Theorem 4.3. Resetting-Hedge enjoys a regret of \(R_{\Pi}(1, T) = O(\sqrt{mT \log K}) \).

Proof. Let \(\tau_s \) be the set of round indices of day \(s \); hence, we have \(\sum_{s=1}^{m+1} |\tau_s| = T \). The overall ranking regret can be upper bounded by the sum of classical regrets for every interval. Hence, the analysis is as follows:

\[
R_{\Pi}(1, T) \leq \sum_{s=1}^{m+1} \sqrt{|\tau_s| \log (K - s)} \leq \sqrt{\log K} \sum_{s=1}^{m+1} \sqrt{|\tau_s|} \leq \sqrt{(m+1)T \log K};
\]

the last inequality is essentially from the Cauchy-Schwarz inequality (see Lemma B.2).

Although the basic Resetting-Hedge strategy adapts to \(m \), it has many downsides. For example, resetting can be wasteful in practice. Another natural strategy, simply running Hedge on the set of
all $K!$ permutation experts, is non-adaptive (obtaining regret $O(\sqrt{TK \log K})$ and computationally inefficient if implemented naïvely). However, as we show in Section 5.1, this algorithm can be implemented efficiently (with runtime linear in K rather than $K!$) and also, as we show in Section 5.3, by running Hedge on top of several copies of Hedge (one per specially chosen learning rate), we can obtain a guarantee that is far better than Theorem 4.3. Moreover, our efficient implementation of Hedge can be extended to adaptive algorithms like AdaHedge and FlipFlop [5].

4.3 Known order of dying

A natural question is whether Learner can leverage information about the order of experts that are going to die to achieve a better regret. We show that the answer is positive: the bound can be improved by a logarithmic factor. We also give a matching lower bound for this case (so both bounds are tight).

Similar to the unknown setting, we provide a construction to prove a lower bound on the ranking regret in this case. We still assume that $\sqrt{T/2 \log K < T}$.

Theorem 4.4. When Learner knows the order of dying, the minimax regret is $\Omega(\sqrt{mT})$.

Proof Sketch. Our construction involves first partitioning all the rounds to $m/2$ days of equal length. On day s, all experts will suffer loss 1 on all the rounds except for experts e_{2s-1} and e_{2s}, who will suffer losses drawn i.i.d. from a Bernoulli distribution with success probability $p = 1/2$. Experts e_{2s-1} and e_{2s} will die at the end of day s, and therefore, each “day game” effectively has 2 experts; our lower bound holds even when Learner knows this fact. Furthermore, Learner will be aware that these two experts (e_{2s-1} and e_{2s}) will die at the end of day s. Similar to the proof of Theorem 4.2, the minimax regret is lower bounded by the sum of the minimax regrets over each day game. □

Although the proof is relatively simple, it is at least a little surprising that knowing such rich information as the order of dying only improves the regret by a logarithmic factor.

To achieve an optimal upper bound, using the results of Theorem 3.1, the strategy is to create $2^m(K - m)$ experts (those that are effective) and run Hedge on this set.

Theorem 4.5. For the case of known order of dying, the strategy as described above achieves a regret of $O(\sqrt{mT \log K})$.

Proof. Hedge has regret of $O(\sqrt{TK \log K})$ for K number of experts. Therefore, running Hedge on $2^m(K - m)$ experts yields the desired bound. □

Though the order of computation in the above strategy is better than $O(K^K)$, it is still exponential in K. In the next section, we introduce algorithms that simulate these strategies but in a computationally efficient way.

5 Efficient algorithms for dying experts

The results of [10] imply computational hardness of achieving no-regret algorithms in sleeping experts; yet, we are able to provide efficient algorithms for dying experts in the cases of unknown and known order of dying. For the sake of simplicity, we initially assume that only one expert dies each night. Later, in Section 5.3, we show how to extend the algorithms for the general case where multiple experts can die each night. We then show how to extend these algorithms to adaptive algorithms such as AdaHedge [5]. The algorithms for both cases are given in Algorithms 1 and 2.

5.1 Unknown order of dying

We now show how to efficiently implement Hedge over the set of all the orderings. Even though Resetting-Hedge is already efficient and achieves optimal regret, it has its own disadvantages. The issue arises when one needs to extend Resetting-Hedge to adaptive algorithms. This is particularly important in real-world scenarios, where Learner wants to adapt to the environment (such as stochastic or adversarial losses). We show that Algorithm 1, Hedge-Perm-Unknown (HPU), can be adapted to AdaHedge [19] and, therefore, we can simulate FlipFlop [5]. Next, we give the main idea on how the
We will discuss how to tune η_j will die. Denote by w the sum of the weights given to all the orderings in each group. Hence, initially there will be K groups. Then, if expert e_j dies, every ordering in the group associated with e_j will be moved to another group and the empty group will be deleted. We prove that the orderings will distribute to other groups symmetrically after a night. Using this fact, we show that we do not need to know the elements of a group; we only maintain the sum of the weights given to all the orderings in each group.

Algorithm 1: Hedge-Perm-Unknown (HPU)

$$\forall i \in [K] \quad c_i,1 := 1, \quad h_{i,1} := (K - 1)!$$

$E_a := \{e_1, e_2, \ldots, e_K\}$

for $t = 1, 2, \ldots, T$

play $p_t = \frac{[1, e_1, e_2, \ldots e_K]}{\sum_{j=1}^K h_{j,t} e_{c_{j,t}}}.$

receive $(\ell_{1,t}, \ldots, \ell_{K,t})$

for $e_i \in E_a$

- $c_{i,t+1} := c_{i,t} \cdot e^{-\eta \ell_{i,t}}$
- $h_{i,t+1} := h_{i,t}$

if expert j dies then

$E_a := E_a \setminus \{e_j\}$

for $e_i \in E_a$

- $h_{i,t+1} := h_{i,t+1} \cdot c_{i,t+1}$
- $c_{i,t+1} := 1$

Algorithm 2: Hedge-Perm-Known (HPK)

$$\forall i \in [K] \quad c_i,1 := 1, \quad h_{i,1} := [2^{K-1}]$$

$E_a := \{e_1, e_2, \ldots, e_K\}$

for $t = 1, 2, \ldots, T$

play $p_t = \frac{[1, e_1, e_2, \ldots, e_K]}{\sum_{j=1}^K h_{j,t} e_{c_{j,t}}}.$

receive $(\ell_{1,t}, \ldots, \ell_{K,t})$

for $e_i \in E_a$

- $c_{i,t+1} := c_{i,t} \cdot e^{-\eta \ell_{i,t}}$
- $h_{i,t+1} := h_{i,t}$

if expert j dies then

$E_a := E_a \setminus \{e_j\}$

for each $i = j + 1$ to K

- $h_{i,t+1} := h_{i,t+1} \cdot c_{i,t+1}$
- $c_{i,t+1} := 1$

The computational cost of the algorithm at each round will be $O(K)$. We claim that HPU will behave the same as executing Hedge on Π. We use induction on rounds to show the weights are the same in both algorithms. By “simulating” we mean that the weights over the original experts will be maintained identically to how Hedge maintains them.

Theorem 5.1. At every round, HPU simulates running Hedge on the set of experts Π.

Proof Sketch. The main idea is to group the permutation experts with similar predictions (the first expert alive in the permutation) in one group. Hence, initially there will be K groups. Then, if expert e_j dies, every ordering in the group associated with e_j will be moved to another group and the empty group will be deleted. We prove that the orderings will distribute to other groups symmetrically after a night. Using this fact, we show that we do not need to know the elements of a group; we only maintain the sum of the weights given to all the orderings in each group.
5.2 Known order of dying

For the case of known order of dying, we propose Algorithm 2, Hedge-Perm-Known (HPK), which is slightly different than HPU. In particular, the weight redistribution (when an expert dies) and initialization of coefficient $b_{i,1}$ is different. In the proof of Theorem 5.1, we showed that when the set of experts includes all the orderings, the weight of the expert j that died will distribute equally between initial experts ($e_j \in \mathcal{E}$). But when the set of experts is only the effective experts, this no longer holds. In this section, we assume without loss of generality that the experts die in the order e_1, e_2, \ldots and recall that \mathcal{E} denotes the set of effective orderings. Based on Theorem 3.1, the number of experts starting with e_i in \mathcal{E} is $[2^K-i^{-1}]$; we denote the set of such experts as \mathcal{E}_e.

Theorem 5.2. At every round, HPK simulates running Hedge on the set of experts \mathcal{E}.

Remarks for tuning learning rates. For both algorithms, we assume T is known beforehand. So, the learning rate for HPU is $\eta = \sqrt{(2 \log(K))/T}$ and for HPK is $\eta = \sqrt{(2 \log(2m(K - m)))/T}$. One can use a time-varying learning rate to adapt to T in case it is not known.

5.3 Extensions for algorithms

As we mentioned at the beginning of Section 5, for the sake of simplicity we initially assumed that only one expert dies each night. First, we discuss how to handle a night with more than one death. Afterwards, we explain how to extend/modify HPU and HPK to implement the Follow The Leader (FTL) strategy. We then introduce a new algorithm which simulates FTL efficiently and maintains \mathcal{L} (which we discuss in the next extension). Here, we propose a simple algorithm to perform FTL on the set of orderings. The algorithm works as follows:

Theorem 5.3. Consider running Hedge on top of K copies of HPU where, for $r \in \{0, 1, \ldots, K - 1\}$, we set $\varepsilon_r = \prod_{i=0}^{r-1} \frac{1}{\sqrt{t}}$ and the r^{th} copy of HPU uses learning rate $\eta_r^\pi := \sqrt{8 \log(1/\varepsilon_r)/t}$. Let π^* be a best permutation expert in hindsight and suppose that the sequence $(\sigma^1(\pi^*), \ldots, \sigma^T(\pi^*))$ changes experts at most l times. Then the regret of this algorithm is $O(\sqrt{T(l + 1) \log(K)})$.

Note that this theorem does better than adapt to m, as with m nights we always have $l \leq m$ but l can in fact be much smaller than m in practice. Hence, Theorem 5.3 recovers and can improve upon the regret of Resetting-Hedge and, moreover, wasteful resetting is avoided. Also, while the computation increases by a factor of K, it is easy to see that one can instead use an exponentially spaced grid of size $\log_2(K)$ to achieve regret of the same order.

Follow the Leader. FTL might be the most natural algorithm proposed in online learning. In round t the algorithm plays the expert with the lowest cumulative loss up to round t, L^*_t. By setting $\eta = \infty$ in Hedge and similarly, in HPU and HPK, we recover FTL; hence, our algorithms can simulate FTL. The motivation for FTL is that it achieves constant regret (with respect to T) when the losses are i.i.d. stochastic and there is a gap in mean loss between the best and second best (permutation) experts. Our algorithms do not maintain L^*_t, but we need L^*_t to implement AdaHedge (which we discuss in the next extension). Here, we propose a simple algorithm to perform FTL on the set of orderings. The algorithm works as follows:
1. Perform as FTL on alive initial experts and keep track of their cumulative losses \((L_t^1, L_t^2, \ldots, L_t^K) \), while ignoring the dead experts;

2. If expert \(j \) dies in round \(t' \), then for every alive expert \(i \) where \(L_{t'}^i > L_{t'}^j \) do: \(L_{t'}^i := L_{t'}^j \).

This not only performs the same as FTL but also explicitly keeps track of \(L_t^* \). We will use this implementation to simulate AdaHedge.

AdaHedge. The following change to the learning rate in HPU/HPK recovers AdaHedge. Let \(\hat{L}_t = \sum_{r=1}^t \hat{\ell}_r \). For round \(t \), AdaHedge on \(N \) experts sets the learning rate as \(\eta_t = (\ln N)/\Delta_{t-1} \) and \(\Delta_t = \hat{L}_t - M_t \) where \(M_t = \sum_{r=1}^t m_r \) and \(m_r = -\frac{1}{w_r \cdot e^{-\eta_r \cdot \ell_r}} \); here, \(m_r \) can easily be computed using the weights from HPU/HPK. As we have the loss of the algorithm at each round, we can calculate \(M_t \). Also, using the implementation of FTL describe above, we can maintain \(L_t^* \).

FlipFlop. By combining AdaHedge and FTL, [5] proposes FlipFlop which can do as well as either of AdaHedge (minimax guarantees and more) or FTL (for the stochastic i.i.d. case). We can adapt HPK and HPU to FlipFlop by implementing AdaHedge and FTL as described above and switching between the two based on \(\Delta_{ah_t} \) and \(\Delta_{ftl_t} \), where \(\Delta_{ftl_t} \) is defined similar to \(\Delta_{ah_t} \) but the learning rate associated with \(m_t \) for FTL is \(\eta_{ftl_t} = \infty \) while for AdaHedge it is \(\eta_{ah_t} = \frac{\ln K}{\Delta_{t-1}} \).

Corollary 5.1. By combining FTL and AdaHedge as described above, HPU and HPK simulate FlipFlop over set of experts \(A \) (where \(A = \Pi \) for HPU and \(A = E \) for HPK) and achieve regret

\[
R_A(1, T) < \min \left\{ C_0 R_A^{ftl}(1, T) + C_1 \sqrt{\frac{L^*_t (T - L^*_T)}{T} \ln |A|} + C_3 \ln |A| \right\},
\]

where \(C_0, C_1, C_2, C_3 \) are constants.

The interest in FlipFlop is that in the real-world we may not know if losses are stochastic or adversarial. This motivates one to use an algorithms that detect and adapt to easier situations.

6 Conclusion

In this work, we introduced the dying experts setting. We presented matching upper and lower bounds on the ranking regret for both the cases of known and unknown order of dying. In the case of known order, we saw that the reduction in the number of effective orderings allows our bounds to be reduced by a \(\sqrt{\log K} \) factor. While it appears to be computationally hard to obtain sublinear regret in the general sleeping experts problem, in the restricted dying experts setting we provided efficient algorithms with optimal regret bounds for both cases. Furthermore, we proposed an efficient implementation of FTL for dying experts which, combined with efficiently maintaining mix losses, enabled us to extend our algorithms to simulate AdaHedge and FlipFlop. It would be interesting to see if the notion of effective experts can be extended to other settings such as multi-armed bandits. Furthermore, it might be interesting to study the problem in regimes in between known and unknown order.

Acknowledgments

This work was supported by the NSERC Discovery Grant RGPIN-2018-03942.

References

