NIPS Proceedingsβ

A Stochastic Composite Gradient Method with Incremental Variance Reduction

Part of: Advances in Neural Information Processing Systems 32 (NIPS 2019) pre-proceedings

[PDF] [BibTeX] [Supplemental]

Authors

Conference Event Type: Poster

Abstract

We consider the problem of minimizing the composition of a smooth (nonconvex) function and a smooth vector mapping, where the inner mapping is in the form of an expectation over some random variable or a finite sum. We propose a stochastic composite gradient method that employs incremental variance-reduced estimators for both the inner vector mapping and its Jacobian. We show that this method achieves the same orders of complexity as the best known first-order methods for minimizing expected-value and finite-sum nonconvex functions, despite the additional outer composition which renders the composite gradient estimator biased. This finding enables a much broader range of applications in machine learning to benefit from the low complexity of incremental variance-reduction methods.