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Abstract

This paper introduces a structured memory which can be easily integrated into a
neural network. The memory is very large by design and significantly increases
the capacity of the architecture, by up to a billion parameters with a negligi-
ble computational overhead. Its design and access pattern is based on product
keys, which enable fast and exact nearest neighbor search. The ability to increase
the number of parameters while keeping the same computational budget lets the
overall system strike a better trade-off between prediction accuracy and compu-
tation efficiency both at training and test time. This memory layer allows us to
tackle very large scale language modeling tasks. In our experiments we consider
a dataset with up to 30 billion words, and we plug our memory layer in a state-
of-the-art transformer-based architecture. In particular, we found that a memory
augmented model with only 12 layers outperforms a baseline transformer model
with 24 layers, while being twice faster at inference time. We release our code for
reproducibility purposes.3

1 Introduction

Neural networks are commonly employed to address many complex tasks such as machine trans-
lation [43], image classification [27] or speech recognition [16]. As more and more data becomes
available for training, these networks are increasingly larger [19]. For instance, recent models both
in vision [29] and in natural language processing [20, 36, 28] have more than a billion parame-
ters. The higher-capacity enables better modeling of data like natural text or images, and it also
improves generalization [41, 33]. Unfortunately, increasing capacity has led to a dramatic increase
of computational complexity, both at training and inference time [20].

There is a growing interest in developing architectures with reasonable computational complexity.
Recently, there has been some efforts to develop high capacity architectures that operate on a limited
computational budget [40, 18]. This is well illustrated by the “On-device Visual Intelligence Chal-
lenge” [5], which specifically focuses on the complexity/accuracy trade-off for image classification.

Some researchers have attempted to increase the capacity of a network without increasing its com-
putational complexity. Most notably, Rae et al. [37] incorporate fast nearest neighbor search within
a neural network architecture to leverage large key-value layers with sparse reads and writes. Their
approach relies on an external indexing structure [32], which is approximate and needs to be re-
learned regularly while training the neural network to avoid a catastrophic drift.

In this work, we propose a key-value memory layer that can scale to very large sizes while keeping
exact search on the key space. This layer dramatically increases the capacity of the overall system
for a negligible computational overhead. Unlike existing models based on key-value memories (see
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Figure 1: Overview of a key-value memory layer: The input x is processed through a query
network that produces a query vector q, which is compared to all the keys. The output is the sparse
weighted sum over the memories associated with the selected keys. For a large number of keys |K|,
the key selection procedure becomes too expensive in practice. Our product key method is exact and
makes this search process very fast.

Figure 1), we define keys as the concatenation of two sub-keys, in the spirit of product quantiza-
tion [21]. As shown in more details in Figure 2, this structure implicitly defines a very large set of
keys, each being associated with a value memory slot. The set of value vectors introduces the bulk
of the parameters, as it scales quadratically with the number of sub-keys. Despite the large num-
ber of memory slots, finding the exact closest keys to the input is very efficient, typically requiring
O(
√
|K|) vector comparisons, where |K| is the total number of memory slots. All the memory pa-

rameters are trainable, yet only a handful of memory slots are updated for each input at training time.
Sparsity of key selection and parameter updates make both training and inference very efficient.

Our layer allows us to tackle problems where current architectures underfit given the vast amount of
available data, or when they are too slow to work in practice. We thus focus on the language mod-
eling task, integrating our memory within the popular transformer architecture [44]. This choice
is motivated by the success of BERT [11] and GPT-2 [36], which demonstrated that increasing the
capacity of large models directly translates to large improvements in language modeling, which in
turn translates to better performance in both language understanding tasks [11, 46] and text genera-
tion [36]. Overall, our paper makes the following contributions:

◦ We introduce a new layer that provides a large capacity to a neural network for only a slight
computational overhead both at train and test time.

◦ Our fast indexing strategy offers exact nearest neighbor search by construction, and avoids
the pitfall of relying on an indexing structure that needs to be re-learned during training.

◦ We demonstrate our method within a large state-of-the-art transformer, composed of 24
layers of dimension 1600. Our method with 1 memory and 12 layers outperforms a 24-
layer transformer while being twice faster at inference time. We show that adding more
memory layers to transformers of various complexities provides systematic and significant
improvements on our target task.

2 Related work

Different approaches have been proposed to increase the capacity of neural networks without in-
creasing too much the computational complexity. For instance, conditional computation models
aim at routing inputs into very large neural networks such that only a subset of connections and/or
layers are used to process each input. Different methods have been developed like large mixture of
experts [40], gating techniques [3, 12, 6] or even reinforcement learning-based approaches [10].

Another line of research is the development of memory augmented neural networks. For instance,
memory-based neural layers [47, 42] are an efficient way to represent variable length inputs for
complex problems such as question answering [48]. Such memories can also operate in feature
space and have various reading and writing mechanisms [23, 17]. Unfortunately, these approaches
scale linearly with the size of the memory which is prohibitive for very large memories. Neural cache
models [15] suffer from the same scaling issues, which are circumvented by adopting approximate
lookup techniques at test time [14].
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Discretization techniques have been intensively studied for compressing network weights [8, 38]
and/or activations [7, 38] or to accelerate inference. For instance, Gerald et al. [13] propose to
map an input to a low-dimensional binary code, each code being associated with one category, thus
reducing the complexity of inference by avoiding the use of a final large linear layer. Another
model is proposed in [45], where the authors develop a fast locality-sensitive hashing technique
to approximate the dot product between large matrices and vectors in neural networks. However,
exploiting binary codes or approximate techniques at training time raises several challenges in terms
of optimization, because approximate indexes are not accurate in high-dimensional spaces. In our
paper, we borrow some ideas from product quantization (PQ) [21]. This is an approximate search
technique that maps database vectors into compact codes. However, our goal is different: we do not
build an approximate index, but rather we exploit the idea to represent a large set of key vectors by
a drastically smaller number of vectors, that we update by regular back-propagation. As discussed
later, the selection of the closest keys is exact and inherits from the fast neighbor search of PQ.

Our model is also related to sparsity models which have been mainly studied in the unsupervised
learning setting [34, 24]. For instance, the k-sparse autoencoder [30] only keeps the k largest values
in the latent representation of an auto-encoder, similar to our memory layer but without the product
keys component. In winner take all autoencoders [31], sparsity is induced by using mini-batch
statistics, while in the sparse access memory [37] reports some speed-up by both thresholding the
memory to a sparse subset, and by using efficient data structures for content-based read operations.
Unfortunately, the fast access to memories rely on an approximate external indexing structure [32]
that has to be re-learned periodically. Our work solves this issue by fully incorporating the key
selection mechanism as a network component.

The transformer network [44] is the current workhorse of Natural Language Processing (NLP): it
is employed ubiquitously across a large variety of tasks. Transformers are built by stacking blocks
composed of self-attention layers followed by fully connected layers (dubbed FFN), as shown in
Figure 3. The components of the memory layer bear similarities to the query, key and value networks
used in self-attention layers with two notable differences: the keys and values do not correspond to
input tokens but are free embedding vectors, and the number of values (memory size) is very large.

3 Learnable product key memories

We consider the design of a function m : Rd → Rn, that will act as a layer in a neural network. The
purpose of m is to offer a large capacity within a neural network.

3.1 Memory design

High-level structure. The overall structure of our memory is illustrated by Figures 1 and 2. The
memory is composed of three components: a query network, a key selection module containing two
sets of sub-keys, and a value lookup table. It first computes a query that is compared to the set of
product keys. For each product key, it computes a score and selects the k product keys with the
highest scores. The scores are then used to produce an output m(x) via a weighted sum over the
values associated with the selected keys. All the parameters of the memory are trainable, yet only
k memory slots are updated for each input. The sparse selection and parameter update make both
training and inference very efficient.

Query generation: pre-processing network. The function q : x 7→ q(x) ∈ Rdq , referred to as
the query network, maps the d-dimensional input to a latent space of dimensionality dq. Typically,
q is a linear mapping or a multi-layer perceptron that reduces the dimensionality from d to dq =
512. As keys are randomly initialized, they occupy the space relatively uniformly. Adding a batch
normalization layer on the top of the query network helps increasing key coverage during training.
This insight is confirmed by our ablation experiments in Section 4.5.

Standard key assignment and weighting. Let q(x) be a query and Tk denote the top-k operator4.
Given a set of keys K = {k1, . . . , k|K|} composed of |K| dq-dimensional vectors, and an input x,

4If the permutation (i1, . . . , in) sorts numbers (t1, . . . , tn) as ti1 ≥ ti2 ≥ · · · ≥ tin , the top-k indices are
Tk(t1, . . . , tn) = {i1, . . . , ik}
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Figure 2: Illustration of the product keys. We define two discrete subsets of keys (sub-key set 1
and sub-key set 2). They induce a much larger set of keys, which are never made explicit (product
keys). Given a query, we split it into two sub-queries (q1 and q2). Selecting the k closest keys (k = 2
in the figure) in each subset implicitly selects k × k keys. The k keys maximizing the inner product
with the query are guaranteed to belong to this subset, on which the search can be done efficiently.

we select the top k keys maximizing the inner product with the query q(x):

I = Tk
(
q(x)T ki

)
# Get k nearest neighbors (1)

w = Softmax
(
(q(x)T ki)i∈I

)
# Normalize top-k scores (2)

m(x) =
∑

i∈I
wivi # Aggregate selected values (3)

Here I denotes the indices of the k most similar keys (where the similarity measure is the inner
product), and w is the vector that represents the normalized scores associated with the selected keys.
All these operations can be implemented using auto-differentiation mechanisms, making our layer
pluggable at any location in a neural network.

Operations (2), (3) only depend on the top-k indices and are therefore computationally efficient.
In contrast, the exhaustive comparison of Equation (1) is not efficient for large memories since it
involves computing |K| inner products. To circumvent this issue, we resort to a structured set of
keys, that we refer to as product keys.

The product key set is defined as the outer product, with respect to the vector concatenation
operator, of two vector codebooks C and C′:

K = {(c, c′) | c ∈ C, c′ ∈ C′}

The total number of keys induced by this Cartesian product construction is |K| = |C|×|C′|. The sets
C and C′ both comprise a set of sub-keys of dimension dq/2. We exploit this structure to compute
the closest keys I ∈ (1, ...,K) efficiently. First, we split the query q(x) into two sub-queries q1 and
q2. We then compute the k sub-keys in C (resp. C′) closest to the sub-query q1 (resp. q2):

IC = Tk
(
(q1(x)

T ci)i∈{1...|C|}
)
, IC′ = Tk

(
(q2(x)

T c′j)j∈{1...|C′|}
)

(4)

We are guaranteed that the k most similar keys in K are of the form {(ci, c′j) | i ∈ IC , j ∈ IC′}. An
example of product keys with the key selection process is shown in Figure 2.

3.2 Complexity

Searching for the top-k most similar keys when the keys have a flat representation requires |K|
comparisons of vectors of size dq, i.e. O(|K| × dq) operations.

For product keys, we consider the setup where |C| = |C′|, i.e. the configuration that maximizes
|C|× |C′| for a fixed number of sub-keys |C|+ |C′|. Since |K| = |C|× |C′|, we have |C| =

√
|K|. We

only need to compare the two sub-queries with |C| and |C′| sub-keys of size dq/2, which amounts to
O(|C| × dq/2 + |C′| × dq/2) = O(|C| × dq) = O(

√
|K| × dq) operations.

Then, we need to search for the top-k keys in {(ci, c′j) | i ∈ IC , j ∈ I ′C}, which is a set composed
of k2 keys of dimension dq. This can be done in O(k2 × dq) operations (in practice, this could be
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Self-attention Feed-forward
layer (FFN)+ + Self-attention Memory layer

(PKM)+ +

Figure 3: Left: A typical transformer block is composed by a self-attention layer followed by an
FFN layer (a two layer network). Right: In our system, we replace the FFN layer with a product
key memory layer, which is analogous to a sparse FFN layer with a very large hidden state. In
practice, we only replace the FFN layer in N layers, where typically N ∈ {0, 1, 2}.

done in O(k log k) scalar operations with a priority list [1], but this choice is less compliant with
GPU architectures). As a result, the overall complexity is:

O
(
(
√
|K|+ k2)× dq

)
For small values of k, and a memory of size |K| = 10242, retrieving the nearest product keys
requires about 103 less operations than an exhaustive search. As shown later in our ablation study,
product keys also lead to a better performance compared to a set composed of flat keys.

3.3 Multi-head memory attention

We make the model more expressive with a multi-head mechanism, where each head independently
computes a query used to select k keys from the memory. The memory simply sums the output
mi(x) of each head i: m(x) =

∑H
i=1mi(x) where H is the number of heads.

Each head has its own query network and its own set of sub-keys, but all heads share the same
values. This is similar to the multi-head attention used in transformers, except that we do not split
the query into H heads, but instead create H queries. As the query networks are independent from
each other and randomly initialized, they often map the same input to very different values of the
memory. In practice, for the same input we observe very little overlap between the keys selected
by two different heads. This method let us increase key usage and generally improves performance.
The impact of the multi-head attention mechanism is discussed in Section 4.5.

4 Experiments

We report results on large-scale experiments for transformer models equipped with a memory, fol-
lowed by an ablation study that shows the impact of different memory components on the model
performance and memory usage. We propose to replace the FFN block of some transformer layers
by a memory, as presented in Figure 3. In that setting, the memory is integrated with a residual con-
nection in the network, and the input x to the memory layer becomes x ← x + PKM(x) instead of
x← x+ FFN(x). In practice, we could also keep the FFN layer and simply interleave the memory
between some transformer layers.

4.1 Dataset

We evaluate the impact of our memory in a large scale language modeling task, where traditional
models are known to underfit. The largest publicly available language modeling dataset is the One
Billion Word corpus [4]. As noted in prior work [2, 9, 36], obtaining a good performance on this
dataset requires tedious regularization as it is now too small for standard architectures. In our experi-
ments, we encountered the same issues, and observed that even a small model was enough to overfit:
on this dataset, for a 16 layers model with a dimensionality of 1024, we obtain a test perplexity of
25.3 when the validation perplexity starts to increase. The train perplexity is then equal to 14.8 and
keeps improving while the validation perplexity deteriorates.

We therefore evaluate the benefit of our approach on a corpus that is 30 times larger and extracted
from the public Common Crawl. The training set is composed of 28 billion words (140 GB of data)
extracted from about 40 million English news articles indexed by Common Crawl corpora. The
validation and test sets are both composed of 5000 news articles removed from the training set.

Unlike in the One Billion Word corpus, we did not shuffle sentences, allowing the model to learn
long range dependencies. On this dataset, we did not observe any overfitting, and increasing the
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model capacity systematically led to a better performance on the validation set. We tokenized the
data using the tokenizer provided by the Moses toolkit [26]. To reduce the vocabulary size, we use
fastBPE5 to apply Byte Pair Encoding (BPE) [39], with 60k BPE splits.

4.2 Evaluation metrics

We measure the performance of our models by reporting the perplexity on the test set. For models
with memories, we report two different metrics to evaluate the usage:

• The memory usage that represents the fraction of accessed values: #{zi 6= 0}
• The KL divergence between z and the uniform distribution: log(|K|) +

∑
zi log(zi)

where z = z′/‖z′‖1, and z′ ∈ R|K| is defined as z′i =
∑

x w(x)i where w(x) represents the weights
of the keys accessed in the memory when the network is fed with an input x from the test set (i.e.,
the w(x) are sparse with at most H × k non-zero elements).

At test time, we expect the model to access as many keys as possible, i.e. to have a usage near
100%; a lower usage means that part of the capacity is not exploited at all. The KL divergence
reflects imbalance in the access patterns to the memory: if the model attends the same key for every
query (while giving a tiny weight to the remaining keys), it would give a perfect usage but a very
high KL, showing that the same performance could be achieved with just one value.

4.3 Training details

We use a transformer architecture with 16 attention heads and learned positional embeddings. We
consider models with 12, 16 or 24 layers, with either 1024 or 1600 dimensions. We train our models
with the Adam optimizer [25], with a learning rate of 2.5 × 10−4, with β1 = 0.9, β2 = 0.98,
following the learning rate schedule of Vaswani et al. [44]. In the memory, the keys and the query
network are learned with the same optimizer and learning rate as the rest of the network. Since the
memory values are learned with sparse updates, we found it beneficial to learn them with a higher
Adam learning rate of 10−3. We implement our models with PyTorch [35], and train them on 32
Volta GPUs. We use float16 operations to speed up training and to reduce the GPU memory usage
of our models. To retrieve key indices efficiently, we perform the search over sub-keys with a fast
nearest neighbors implementation by Johnson et al. [22].

For a transformer model with L layers and N memories, we interspersed the memories at regular
intervals. For instance, for L = 16 andN = 2, we replace the FFN of layers 6 and 12. This way, the
network can leverage information at different levels of the architecture. The impact of the memory
position within the network is studied in Section 4.5. In our main experiments, we use H = 4
memory heads, we select k = 32 keys per head, and use |K| = 5122 memory slots.

4.4 Results

Dimension 1024 1600
N memories 0 1 2 3 0 1

12 layers 17.7 15.6 14.8 14.5 15.0 13.7
16 layers 16.7 14.9 14.1 - 14.4 13.2
24 layers 16.0 14.6 - - 14.0 -

Table 1: Test perplexity for mod-
els with and without memory. PKM
models with 12 layers outperforms 24-
layer models of same dimensionality.
Bold refers to models optimizing per-
formance for a given dimension.

Table 1 and Figure 4 show the perplexity of different models on the test set of the CC-News corpus.
We observe that increasing either the dimensionality or the number of layers leads to significant per-
plexity improvements in all the models. However, adding a memory to the model is more beneficial
than increasing the number of layers; for instance, a model with a single memory and 12 layers out-
performs a memoryless model with the same hidden dimension and 24 layers, both when the number
of hidden units is 1024 and 1600. Adding 2 or 3 memory layers further improves performance.

Figure 4 also shows speed as measured in words per second, for different model configurations.
In particular, when the internal hidden states have 1024 dimensions, a model with 12 layers and a

5https://github.com/glample/fastBPE
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Figure 4: Trade-off between speed and perplexity on the test set. Labels on the graph represent
the number of layers. Adding memory layers significantly improves the performance and has a
negligible impact on the inference speed. Models with 12 layers and a Product Key Memory (PKM)
outperform 24-layer models of the same dimension, while being almost twice faster at inference. In
particular, a 12-layer model of dimension 1024 with a memory outperforms a model of 24 layers of
the same dimension (same configuration as BERT large).

memory obtains a better perplexity than a model with 24 layers (same configuration as BERT large),
and it is almost twice faster. When adding memory to large models that have internal dimensionality
equal to 1600, inference time barely increases.

4.5 Ablation Study

In this section we study the impact of the different components on the memory layer, and measure
how they affect the model performance and the memory usage. For all experiments, we consider a
transformer network with 6 layers and 8 heads. Unless specified otherwise, we consider a memory
of 5122 = 262k slots, with 4 memory heads, k = 32 selected keys, and we insert it at layer 5.

Memory size. We train transformer models with memories of size |K| = |C| × |C′|, with |C′| =
|C| and |C| ∈ {128, 256, 384, 512, 768, 1024}. Table 2 shows that test perplexity decreases as the
memory becomes larger. A model with a memory size of 16k obtains a perplexity of 22.8. Increasing
the size to 1M decreases the perplexity down to 18.0 while leaving the inference time unchanged.
The dominant factor for inference time is the number of accessed memory values, which is governed
by the number of memory heads and the parameter k, but not the memory size.

Query Batch Normalization. Table 2 and Figure 5 present results with and without batch nor-
malization in the query network. We observe that for small memories the usage is always close to
100%, but for a memory of size 1M, the batch normalization layer improves usage from 25.8% to
80.3%, with a consequent perplexity decrease from 19.8 down to 18.0. For comparison, a model
without memory obtains a perplexity of 23.0, which is on par with a memory of size 16k.

Finally, we observe a correlation between the number of used keys and the model performance. In
particular, a model with a memory of size 1M that does not use batch normalization uses about
25.8% of the memory values (i.e. roughly 250k values), and obtains a perplexity of 19.8, which is
on par with the model using a memory of size 262k that uses batch normalization, and that has a
nearly optimal memory usage of 100%.

Memory position. In this experiment we insert the memory at different levels in the transformer,
to see where it is the most beneficial. In Table 3 we observe that the model benefits the most from
the memory when it replaces the FFN of the layers 4 or 5 in the transformer. Putting memory at layer
1 (after the input token embeddings) gives the worst performance. When the memory is inserted in
layer 6, it is located right before the softmax output, the model has only one linear layer to process
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Table 2: Perplexity and memory usage for different memory sizes, with and without Batch-
Norm. Adding a batch normalization layer in the query network encourages the model to use more
keys. This is not necessary for small memories of size 16k and 65k where the usage is already close
to 100% without batch normalization, but for memories of size 147k of more, batch normalization
improves the memory usage significantly, along with the perplexity.

Memory size 16k 65k 147k 262k 590k 1M
BatchNorm No Yes No Yes No Yes No Yes No Yes No Yes

Perplexity 22.8 23.0 21.7 21.9 20.9 20.7 20.5 19.8 20.0 18.7 19.8 18.0
Usage (%) 100 100 99.0 100.0 83.8 99.6 64.4 97.9 38.0 90.3 25.8 80.3
KL 0.56 0.56 0.69 0.58 0.94 0.65 1.20 0.68 1.70 0.83 2.06 0.95
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Figure 5: Memory usage and perplexity with and without query batch normalization. Adding batch normal-
ization increases both performance and the fraction of used memory slots.
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Figure 6: Memory usage and perplexity for different number of heads, and number of k-NN. Increasing the
number of heads or k-NN increases both performance and the fraction of used memory slots.

the information read from the memory. The best position to insert the memory is at an intermediate
layer. We surmise that effective use of the memory requires operating in a more abstract feature
space than the input and that it is important to have some layers on the top of the memory to further
process and aggregate information from every location.

Number of heads / k-NN. Figure 6 shows that increasing the number of heads or the number
of k-NN improves both the perplexity of the model, and the memory usage. We also note that
models with identical h × k (h being the number of heads and k the number of nearest neighbors)
have a similar memory usage, i.e. models with (h, k) ∈ {(1, 64), (2, 32), (4, 16), (8, 8)} all have a
memory usage around 70%, and a perplexity around 20.5. Adding more heads overall improves the
performance, but also increases the computation time. Overall, we found that using 4 heads and 32
k-NN strikes a good trade-off between speed and performance.
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Table 3: Perplexity and memory usage for different memory positions in a transformer with 6
layers. Adding a memory in positions 4 or 5 maximizes the performance (layer 1 is the worst).

Position 1 2 3 4 5 6

Perplexity 21.5 20.7 20.4 20.1 19.8 20.3
Usage (%) 100.0 100.0 98.3 97.1 97.9 96.9
KL 2.23 0.95 0.74 0.71 0.68 1.08

Table 4: Perplexity, memory usage and inference speed with product keys and regular keys.
Models with product keys have a much better usage than models that represent keys by a flat matrix,
and obtain a better perplexity. They also have significantly less parameters and are dramatically
faster to run. The speed is measured at inference, in thousands of words per second (w/s). For
models with more than 262k memory slots, we only report the inference time. We observe that with
product keys, the memory size do not impact the inference time.

Memory size 16k 65k 147k 262k 590k 1M
Product Keys No Yes No Yes No Yes No Yes No Yes No Yes

Perplexity 23.2 23.0 22.6 21.9 22.1 20.7 - 19.8 - 18.7 - 18.0
Usage (%) 19.6 100 13.6 100.0 10.1 99.6 - 97.9 - 90.3 - 80.3
KL 2.04 0.56 2.48 0.58 2.77 0.65 - 0.68 - 0.83 - 0.95
Speed (w/s) 35.0k 35.8k 28.5k 36.7k 13.9k 36.4k 7.7k 36.3k 4.7k 36.2k 1.2k 35.7k

Product keys vs. flat keys. Product keys presented in Figure 2 enable finding the nearest neigh-
bors in a matrix of size (|C|2, dk) with the same time/compute complexity of a search over two
matrices of size (|C|, dk

2 ). As a result, product keys contain |C| times less parameters than keys rep-
resented by a full matrix. Table 4 and Figure 7 compare product keys to the default regular flat keys.
In the second case, searching the nearest keys boils down to a liner index search at each iteration,
which is computationally very expensive. As a result, we only report results for memories of size
16k, 65k, 147k, as experiments with a flat index on larger memories takes an unreasonable amount
of time to converge. We can see that models with product keys are not only faster but they have also
a much better memory usage, and consequently obtain a better perplexity.
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Figure 7: Speed over memory size. Speed
(in thousands of words per second) for different
memory sizes. For regular flat keys, increasing
the number of keys significantly slows down the
model, while with product keys, increasing the
memory size barely impacts the inference speed.

5 Conclusion

This paper introduces a memory layer that allows to drastically improve the capacity of a neural
network with a negligible computational overhead. The efficiency of our layer relies on two key
ingredients: the factorization of keys as a product set, and the sparse read/write accesses to the
memory values. Our layer is integrated into an existing neural network architecture. We show
experimentally that it provides important gains on large-scale language modeling, reaching with 12
layers the performance of a 24-layer BERT-large model with half the running time.
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