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Abstract

The inherent noise of neural systems makes it difficult to construct models which
accurately capture experimental measurements of their activity. While much
research has been done on how to efficiently model neural activity with descriptive
models such as linear-nonlinear-models (LN), Bayesian inference for mechanistic
models has received considerably less attention. One reason for this is that these
models typically lead to intractable likelihoods and thus make parameter inference
difficult. Here, we develop an approximate Bayesian inference scheme for a
fully stochastic, biophysically inspired model of glutamate release at the ribbon
synapse, a highly specialized synapse found in different sensory systems. The
model translates known structural features of the ribbon synapse into a set of
stochastically coupled equations. We approximate the posterior distributions by
updating a parametric prior distribution via Bayesian updating rules and show that
model parameters can be efficiently estimated for synthetic and experimental data
from in vivo two-photon experiments in the zebrafish retina. Also, we find that the
model captures complex properties of the synaptic release such as the temporal
precision and outperforms a standard GLM. Our framework provides a viable path
forward for linking mechanistic models of neural activity to measured data.

1 Introduction

The activity of sensory neurons is noisy — a central goal of systems neuroscience has therefore been
to devise probabilistic models that allow to model the stimulus-response relationship of such neurons
while capturing their variability [1]. Specifically, linear-nonlinear (LN) models and their generaliza-
tions have been used extensively to describe neural activity in the retina [2, 3]. However, these type
of models cannot yield insights into the mechanistic foundations of the neural computations they aim
to describe, as they do not model their biophysical basis. On the other hand, mechanistic models on
the cellular or subcellular level have been rarely used to model stimulus-response relationships: they
require highly specialized experiments to estimate individual parameters [4, 5], making it difficult to
employ them directly in a stimulus-response model; alternatively, they often result in an intractable
likelihood, making parameter inference challenging [6].
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Figure 1: Overview of the model. A. After a linear-non-linear processing stage, the signal is passed
to a biophysically inspired model of a ribbon synapse in which vesicles are released in discrete
events. B. Sketch of a bipolar cell with attached photoreceptors (left) and a high resolution electron
microscopy (EM) image of a ribbon synapse with its vesicle pools. The readily releasable pool is
highlighted in red, the reserve pool is shown in white (EM image adapted from [14]).

Here we make use of recent advances in approximate Bayesian computation (ABC) [6, 7, 8, 9, 10, 11]
to fit a fully stochastic, biophysically inspired model of vesicle release from the bipolar cell (BC)
axon terminal to functional two-photon imaging data from the zebrafish retina (Fig. 1). It includes a
linear-nonlinear stage to model the stimulus dependency, and a set of stochastically coupled equations
modeling biophysical properties of the BC synapse. At this so-called “ribbon synapse”, a specialized
protein complex, the “ribbon”, acts as a conveyor belt that “tethers” and “loads” vesicles onto active
zones for future release [12, 13]. It organizes vesicles into multiple pools: the “docked” (or readily
releasable) pool consists of a number of vesicles located directly above the plasma membrane, while
the “ribboned” pool consists of vesicles attached to the ribbon further from the cell membrane. The
docked vesicles are thus primed for immediate release and can be released simultaneously (so called
multivesicular release, MVR). The ribboned vesicles are held in reserve to refill the docked pool as it
is depleted by exocytosis [14, 15]. The transitions of vesicles between those pools can be modeled by
a set of coupled differential equations [16, 4], which we extend to a stochastic treatment. In addition
to photoreceptors and bipolar cells in the retina [17], ribbon synapses are featured in many other
sensory systems, such as in auditory hair cells and the vestibular system [18].

Thus, our proposed Bayesian framework links stimulus-response modeling to a biophysically inspired,
mechanistic model of the ribbon synapse. This may contribute to a better understanding of sensory
computations across levels of description, with applications in a diverse range of sensory systems.

2 Previous work

Models of neural activity Variants and extensions of LN models have been widely used to model
the activity of retinal neurons [2, 19, 1, 3]. In these descriptive models, the excitatory drive to
a cell is modeled as the convolution of a receptive field kernel with the stimulus, followed by a
static nonlinearity. The result of this computation sets the rate of a stochastic spike generator, most
commonly using either a Binomial or Poisson distribution. These basic models have also been used to
approximate BC activity [20], however they do not explicitly model the dynamics of vesicle release at
the ribbon synapse. Existing mechanistic models of synaptic release often require highly specialized
experiments to estimate parameters [21] or make only indirect inferences based on the spiking activity
of post-synaptic cells [22, 23]. In addition, they have not been used to perform system identification.
The linear-nonlinear kinetics (LNK) model [24] attempts to address this issue. After an initial LN
stage, the LNK model passes this information into a “kinetics block” consisting of a first-order set
of kinetic equations implicitly representing the availability of vesicles. However, the LNK model
treats the states of the pools as rescaled Markov process and cannot easily account for discrete vesicle
release or MVR at the given noise level of single synapses.
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Table 1: Variables, parameters and distributions of the model.

Variable Description Parameter Movement
distribution Distribution

time stretch of the kernel γ N (µ, σ2)

non-linearity k, h N (µ,Σ)

correlation of exocytosed vesicles ρ N (µ, σ2)

dt exocytosed vesicles pdt Beta-Bin

D vesicles at dock

r vesicles ribbon→ dock pr res. Binomial N (µ, σ2)

R vesicles on ribbon

c vesicles cytoplasm→ ribbon λc res. Poisson Γ

We address these issues by proposing a model that combines LN modeling for system identification
with a probabilistic, biophysically inspired model for the ribbon synapse, with the capability to model
discrete, multi-vesicular release. In contrast to classical LN models, the parameters of this model are
readily interpretable as they directly refer to biological processes.

Approximate Bayesian Computation Many mechanistic models in computational neuroscience
only provide means to simulate data and do not yield an explicit likelihood function. Therefore,
their parameters cannot be inferred easily. In such simulator-based models, Bayesian inference can
be performed through techniques known as Approximate Bayesian Computation or likelihood-free
inference [8]. The general inference problem can be defined as follows: given some experimental
data x0 and a mechanistic, simulator-based model p(x|θ) parametrized by θ, we want to approximate
the posterior distribution p(θ|x = x0). The simulator model allows us to generate samples xi given
any parameter θ, but the likelihood function cannot be evaluated. Often, xi is first mapped to a
low dimensional space (so called “summary statistics”), in which a loss function is computed. This
mapping defines the features the model is trying to capture [10].

There are two main approaches to solve the inference problem: (1) approximate the likelihood
p(x0|θ) and then sample (e.g. via MCMC) to get the posterior [8, 10]. In this approach, guided
sampling is often used to generate new samples and either train a neural network or update other
parametric models for the likelihood [8, 9]. One disadvantage of this approach is that there is a second
sampling step necessary to obtain the posterior, which can be as time consuming as the inference
of the likelihood. (2) approximate the posterior p(θ|x = x0). In principle, inference via rejection
sampling could be applied, but is often inefficient. Thus, recently proposed methods use parametric
models (like a mixture of Gaussian) to approximate the posterior over several sampling rounds [6].
In our work, we use an ABC method of type (2) with parametric prior distributions and Bayesian
updating rules to approximate the posterior distribution p(θ|x = x0). We show that it efficiently
learns the parameters of the proposed release model.

3 Linear Non-Linear Release Model

Our model consists of two main parts (Fig. 1): a linear-nonlinear (LN) stage models the excitatory
drive to the BC and a release (R) stage, models the vesicle pools as dependent random variables (see
Appendix A for pseudocode). Therefore, we refer to the model as LNR-model.

3.1 Linear-Nonlinear stage

The first stage of the LNR model is a standard LN model, in which a light stimulus l(t) is convolved
with a receptive field wγ to yield the surrogate calcium concentration ca(t) in the synaptic terminal
which is then passed through a static nonlinearity:

ca(t) =

∫ T

τ=0

l(t− τ)wγ(τ)dτ .
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We assume wγ to be a biphasic kernel in order to model the signal processing performed in the
photoreceptor and the BC [16, 25] (Figure 1A, B). A single parameter γ was used to stretch/compress
the kernel on the time axis to estimate the receptive field (see Appendix C). An approach to allow for
more flexibility (e.g. using basis function [2]) could in principle be used as well. However, this would
lead to a higher dimensional parameter space, making inference less efficient. We used a sigmoidal
non-linearity to convert the calcium signal to the release probability:

pdt(t) = 1/
(
1 + exp(−k(cat − h))

)
, (1)

where the parameters for the slope k and the half activation h are inferred from the data. We add a
small positive offset to the non-linearity and renormalized it to allow for spontaneous release.

3.2 Release stage

The second stage of the LNR model consists of a model for the synaptic dynamics based on the
structure of the BC ribbon: we define variables representing the number of vesicles present in each
pool of the ribbon and the number of vesicles moving between pools per timestep (see Table 1). We
use capital letters to define the number of vesicles in a specific pool, and lowercase letters to indicate
the moving vesicles. At each time step, vesicles are first released from the dock, then new vesicles
are moved from the ribbon to the dock, and finally the ribbon is refilled from the cytoplasm. For
simplicity, we assume that only the vesicle release probability is modulated by the excitatory drive;
the docking probabilities and rates of movement to the ribbon are constant over time.

Vesicle Release To model the correlated release of docked vesicles, we use a beta binomial distri-
bution. This is a binomial distribution for which the parameter p is itself a random variable, leading
to correlated events [26]. The release probability pdt is assumed to be the output of the LN stage
according to equation 1. To achieve a correlation ρ for the released vesicles and a release probability
of pdt the parameters for the beta binomial distribution are:

αt = pdt ·
(

1

ρ
− 1

)
and βt = αt ·

(
1

pdt
− 1

)
, if pdt 6= 0.

Thus, in each time step, we first draw the parameter p̃t for the binomial distribution according to
a beta distribution: p̃t ∼ Beta(αt, βt) and then sample the number of released vesicles dt from a
binomial distribution with parameters n = Dt−1 (the numbers of vesicles at the dock) and p̃t:

p(dt|Dt−1) =

{
0 if pdt = 0,(
Dt−1

dt

)
p̃ dtt (1− p̃t)(Dt−1−dt) otherwise.

Movement to the dock We assume that rt vesicles located at the ribbon move to the dock in each
time step. Because there is a maximum number of vesicles Dmax that can be docked, such that
rt +Dt−1 ≤ Dmax, we use a restricted binomial distribution to model stochastic vesicle docking:

p(rt|Rt−1, Dt) =


(
Rt−1

rt

)
prtr (1− pr)(Rt−1−rt) if rt < Dmax −Dt∑

rt≥Dmax−Dt

(
Rt−1

rt

)
prtr (1− pr)(Rt−1−rt) if rt = Dmax −Dt

0 otherwise.

The first case is the standard binomial distribution with appropriate parameters, the second case
models the assumption that moving more vesicles to the dock than its maximum capacity simply fills
the dock and assures that the probabilities over all possible events sum up to one.

Movement to the ribbon We assume a large number of vesicles available in the cytoplasm (which
is not explicitly modeled), such that the number of vesicles ct moving from the cytoplasm to the
ribbon follows a Poisson distribution, again respecting the maximal ribbon capacity Rmax:

p(ct|Rt) =


e−λ λ

ct

ct!
if ct < Rmax −Rt∑

ct≥Rmax−Rt
e−λ λ

ct

ct!
if ct = Rmax −Rt

0 otherwise.
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Figure 2: Overview of the inference method. In each round samples are drawn from the (proposal)
prior (blue), the model is evaluated and the response is mapped to its summary statistic. From this,
the loss per parameter θ is calculated, the best samples are accepted and used to update the (proposal)
prior via Bayesian updating rules, yielding a posterior (red), which is the proposal prior for the next
round.

4 Bayesian Inference of Model Parameters

In the previous section, we constructed a fully stochastic model of vesicle release from BCs, including
an explicit mechanistic model of the ribbon synapse, reflecting the underlying biological structures.
The maximal capacity of the dock Dmax was set based on the measured data to the largest quantal
event observed in the functional recording (Dmax ≈ 7 − 8). Rmax, the maximal capacity of the
ribbon, was set to an estimate on the maximal number of vesicles at the ribbon in goldfish rod
bipolar cells [27, 28], but decreased to reflect the smaller size of cone BCs in zebrafish larva [29]
(Rmax ≈ 50).

Next, we developed an ABC framework for likelihood free inference to infer the remaining model
parameters (Table 1) from functional two-photon recordings. Our method uses parametric prior
distributions which are updated in multiple rounds via Bayesian updating rules to provide a unimodal
approximation to the posterior (Figure 2). Briefly, in each round we first draw a parameter vector
θ from the (proposal) prior and evaluate several runs of the model d̂i for each sampled parameter
vector. Due to the stochasticity of the model, each evaluation returns a different trace, for which a
summary statistic is calculated. This summary statistic reduces the dimensionality of the simulated
trace to a low dimensional vector. Based on this the loss function L(θ) is calculated by comparing it
to the summary statistic of the observed data. The best parameters are used to calculate a posterior,
which is then used as a proposal prior in the next round (Fig. 2, pseudocode in Appendix E).

4.1 Prior distributions and inference

As priors, we used normal distributions for all parameters except for λc (Table 1), where we used a
gamma distribution (the conjugate prior to the Poisson distribution). Some parameters were bounded
e.g. to the interval [0, 1] and their distributions renormalized to effectively truncate the priors.

In each inference round, we used Bayesian updating rules to calculate the posterior distribution [30,
31] based on the j best parameters {θ}. For example, in round n+1, we updated the hyperparameters
for the multivariate normal distribution of the NL parameters, k and h, as:

µn+1 =
κn

κn + j
µn +

j

κn + j
θ̄

Λn+1 = Λn + S +
κnj

κn + j
(θ̄ − µn)(θ̄ − µn)T ,

where θ̄ is the mean over the best parameters and S =
∑j
i=1(θi − θ̄)(θi − θ̄)T the (unnormalized)

covariance of these parameters. The mean is thus updated as a weighted average of the prior mean
and the mean of the best parameters, with weights specified by κ, which is updated as κn+1 = κn+ j.
The posterior degrees of freedom νn+1, which is used to sample the covariance matrix Σ, is the prior
degrees of freedom plus the updating sample size: νn+1 = νn + j. With these updates we end up
in a two step sampling procedure: first we draw the covariance Σ(n+1)i for each sample i of round
n+ 1 from the inverse-Wishart distribution Inv-Wishart(Λ−1n+1, νn+1), and then we draw the samples
from the normal distribution N (µn+1,Σ(n+1)i).

5














