Quantum Entropy Scoring for Fast Robust Mean Estimation and Improved Outlier Detection

Yihe Dong
Microsoft Research
yihedong@gmail.com

Samuel B. Hopkins
University of California, Berkeley
hopkins@berkeley.edu

Jerry Li
Microsoft Research
jerrl@microsoft.com

Abstract

We study two problems in high-dimensional robust statistics: robust mean estimation and outlier detection. In robust mean estimation the goal is to estimate the mean $\mu \in \mathbb{R}^d$ of a distribution on \mathbb{R}^d given n independent samples, an ε-fraction of which have been corrupted by a malicious adversary. In outlier detection the goal is to assign an outlier score to each element of a data set such that elements more likely to be outliers are assigned higher scores. Our algorithms for both problems are based on a new outlier scoring method we call QUE-scoring based on quantum entropy regularization. For robust mean estimation, this yields the first algorithm with optimal error rates and nearly-linear running time $\tilde{O}(nd)$ in all parameters, improving on the previous fastest running time $\tilde{O}(\min(nd/\varepsilon^6, nd^2))$.

For outlier detection, we evaluate the performance of QUE-scoring via extensive experiments on synthetic and real data, and demonstrate that it often performs better than previously proposed algorithms. Code for these experiments is available at https://github.com/twistedcubic/que-outlier-detection.

1 Introduction

We study outlier-robust statistics in high dimensions, focusing on the question: can theoretically sound outlier robust algorithms have practical running times for large, high-dimensional data sets? We address two related problems: robust mean estimation, which is primarily theoretical, and an applied counterpart, outlier detection.

Robust mean estimation Our main theoretical contribution is the first nearly-linear time algorithm for robust mean estimation with nearly-optimal error. Here the goal is to estimate the mean $\mu \in \mathbb{R}^d$ of a d-dimensional distribution D given ε-corrupted samples X_1, \ldots, X_n, that is, i.i.d. samples, an unknown ε-fraction of which have been maliciously corrupted. Under (for instance) the assumption that the covariance of D is bounded by I_d, it has been long known to be possible in exponential time to estimate μ by $\hat{\mu}$ having $\|\mu - \hat{\mu}\|_2 \leq O(\sqrt{\varepsilon})$. In particular, this rate of error is independent of d.

Polynomial-time algorithms provably achieving such d-independent error became known only recently, starting with the works [8, 15]. Until our work, the running time of algorithms with provably d-independent error remained suboptimal by polynomial factors in d or ε; the fastest running time achieved before this work was $\tilde{O}(\min(nd^2, nd/\varepsilon^6))$ [6, 8, 15, 9]. (Here $\tilde{O}(\cdot)$ notation hides logarithmic factors in n and d). While these running times represent a dramatic improvement over previous exponential-time algorithms, there are still many interesting regimes where the additional runtime overheads these algorithms incur render them impractically slow. We give the first algorithm for robust mean estimation with running time $\tilde{O}(nd)$ which achieves error $\|\mu - \hat{\mu}\|_2 \leq O(\sqrt{\varepsilon})$. Note that this running time is nearly-linear in the input size nd. Similar to prior works, our algorithm has information-theoretically optimal sample complexity and nearly-optimal error rates in both the bounded-covariance and sub-Gaussian regimes.

Outlier detection Our main applied contribution is a new algorithm for high-dimensional outlier
detection, which we assess via experiments on both synthetic and real data\footnote{Code is available at https://github.com/twistedcubic/que-outlier-detection}. Our goal is to take
a dataset $X_1, \ldots, X_n \in \mathbb{R}^d$ and assign to each X_i an outlier score $\tau_i \geq 0$, so that higher scores τ_i
are assigned to points X_i more likely to be outliers. Of course, what constitutes an outlier varies
across applications, so no single algorithm for outlier detection is likely to be the best in all domains.
We show that our method performs well in settings where individual outliers are difficult to pick out
on their own (by, say, their ℓ_2 norms or their distances to nearby points), but still collectively bias
empirical statistics such as the mean and covariance.

We compare our method to baselines based on PCA and Euclidean distances, as well as more
sophisticated algorithms from existing literature based on nearest-neighbor distances. Our algorithm
has nearly-linear running time in theory, and simple implementations in practice incur minimal
overhead beyond standard spectral methods, allowing us to run on 1024-dimensional data with no
special optimizations and 8192-dimensional data with a fast approximate implementation. It can
therefore be used in practice to complement existing approaches to outlier detection in exploratory
data analysis.

1.1 What is an outlier and why are they hard to find?

For us, an outlier is an element of a data set which was generated according to a different process than
the majority of the data. For instance, we may imagine that our samples X_1, \ldots, X_n were sampled
i.i.d. from a distribution $(1 - \varepsilon)D + \varepsilon N$ over \mathbb{R}^d, where D is the distribution of inliers, N is the
distribution of outliers, and $\varepsilon > 0$ is a small number – that is, we imagine that a constant fraction
of our data may be outliers.

For this discussion, we also informally imagine that N is sufficiently distinct from D that the set of
outliers could be approximately identified by brute-force search over subsets of $(1 - \varepsilon)n$ samples, if
given unlimited computational resources. Otherwise, outlier detection is not a meaningful problem,
and robust mean estimation is easy (because the empirical mean will be a good estimator). Under
these circumstances, what makes identifying outliers and estimating the mean in their presence
difficult? Chiefly:

Outliers may not be identifiable in isolation. On its own, a typical outlier $X_i \sim N$ may look much
like a typical inlier $X_j \sim D$. For instance, it could be $\|X_i\|_2 \approx \|X_j\|_2$, and X_i, X_j may have similar
distance to the nearest few neighboring samples, especially in high dimensions where samples are far
apart.

Outliers still introduce bias, collectively Even if individual outliers look innocuous, the collective
effect a modified ε-fraction of samples X_i can still substantially change the empirical distribution of
X_1, \ldots, X_n. As a result, even simple statistical tasks like estimating the mean or covariance of D
require sophisticated estimators: naively pruning individual outliers and then employing standard
empirical estimators typically leads to far-suboptimal error rates. For example, an ε-fraction of
X_1, \ldots, X_n which are all slightly biased in a single direction may shift the empirical mean of
X_1, \ldots, X_n, but this bias will be difficult to detect by looking at small numbers of samples at once.
This also demonstrates that successful outlier detection can require global geometric information
about a high-dimensional dataset, such as whether or not a direction exists in which many (say, εn)
samples are unusually biased.

Outliers may be inhomogeneous. Outliers need not exhibit unusual bias in only one direction, or all
have the same norm, or lie in a single cluster. Rather, if a dataset exhibits several forms of corruption,
there may be as many different-looking kinds of outliers. In the theoretical robust mean estimation
setting, the adversary producing ε-corrupted samples may corrupt $\varepsilon n/10$ samples by biasing them in
some direction, another $\varepsilon n/10$ samples by unusually enlarging their norms, and so forth.

Since robust mean estimation involves a malicious adversary, all of the above phenomena must be
addressed by our robust mean estimation algorithm. In the empirical section of this paper, we focus
on designing an outlier detection method suited to situations where at least one of them occurs – in
other cases, existing methods (such as those based on Euclidean norms or local neighborhoods of
individual samples \footnote{11}) may be more appropriate.
1.2 QUE: Quantum Entropy Scoring

Recent innovations in robust mean estimation \cite{15,8} rely on the following crucial observation about ε-corrupted samples \(X_1, \ldots, X_n\) from a distribution \(D\) with covariance \(\Sigma \leq \text{Id}\). Namely: any subset \(S \subseteq \{X_1, \ldots, X_n\}\) of samples which shift the empirical mean by distance more than \(\sqrt{\varepsilon}\) in some direction \(v\) also introduce an eigenvalue of magnitude greater than 1 to the empirical covariance.

In robust mean estimation, this leads to (amongst others) the filter algorithm of \cite{8,9}, one of the first to achieve dimension-independent error rates. Roughly speaking, the algorithm iterates the following until the empirical covariance \(\Sigma\) has small spectral norm: (1) compute the top eigenvector \(v\) of the empirical covariance of \(\hat{\Sigma}\), then (2) throw out samples \(X_i\) whose projections \(|\langle X_i - \bar{\mu}, v \rangle| \gg 1\) is unusually large, where \(\bar{\mu}\) is the empirical mean of the corrupted dataset. For outlier detection this suggests a natural scoring rule – let the outlier score \(\tau_i\) of sample \(X_i\) be proportional to \(|\langle X_i - \bar{\mu}, v \rangle|\).

The main drawback of these algorithms is that they do not adequately account for inhomogeneity of outliers. For the filter, this leads to a worst-case running time of \(O(nd^2)\), because the filter operation (which can be implemented in \(O(nd)\) time) may have to be repeated as many as \(d^2\) times if the adversary introduces outliers lying in \(d\) orthogonal directions. The rule \(\tau_i = |\langle X_i - \bar{\mu}, v \rangle|\) may miss outliers causing a large eigenvalue of \(\Sigma\), but in a direction orthogonal to the top eigenvector \(v\).

In the opposite extreme, if outliers are maximally inhomogeneous – no group of them is unusually biased in some shared direction \(v\) – then the only way they can bias the empirical mean is for the individual \(l_2\) norms \(\|X_i - \bar{\mu}\|_2\) to be larger than typical. This suggests a different scoring rule: \(\tau_i = \|X_i - \bar{\mu}\|_2\). This approach, however, breaks down in the situation we started with, that groups of outliers are biased in a shared direction but they do not have larger norms than good samples.

Our main conceptual contribution is an approach to utilize information about outliers beyond what is available in the top eigenvector of the empirical covariance \(\Sigma\) and in individual \(l_2\) norms. Appropriately adapted to their respective settings, this leads to our algorithms for both robust mean estimation and outlier detection.

Our first observation is that any eigenvalue/eigenvector \(\lambda, v\) – not just the top ones – of the empirical covariance with \(\lambda \gg 1\) must be due to outliers. We therefore consider the intermediate goal of finding a distribution over directions \(v \in \mathbb{R}^d\) containing information about as many outlier directions as possible. We formalize this as the following entropy-regularized convex program over \(d \times d\) positive semidefinite matrices:

\[
\max_{U \in \mathbb{R}^{d \times d}} \alpha \cdot \langle U, \Sigma \rangle + S(U) \text{ such that } U \succeq 0, \text{tr}(U) = 1, \tag{1}
\]

where \(\alpha \geq 0\) is some constant and \((A, B) = \text{tr}(AB^\top)\) denotes the trace inner product of matrices. Here, \(S(U) = -\langle U, \log U \rangle\) is the quantum entropy (also known as the von Neumann entropy) of the matrix \(U\). If \(U = \sum_{i=1}^d \mu_i v_i v_i^\top\) is the eigendecomposition of \(U\), since it has \(\text{tr}(U) = 1\) we may interpret it as a distribution over orthonormal vectors \(v_1, \ldots, v_d\) with weights \(\mu_1, \ldots, \mu_d\) and hence with entropy \(S(U)\). Under this interpretation, \((U, \Sigma) = \mathbb{E}_{v_i \sim \mu} (v_i \Sigma v_i)\). As \(\alpha\) varies, (1) trades off optimizing for a distribution supported on many distinct directions for a distribution supported on eigenvectors of \(\Sigma\) with large eigenvalues. The optimizer of (1) takes the form \(U = \exp(\alpha \cdot \Sigma)/\text{tr}\exp(\alpha \cdot \Sigma)\) where \(\exp(\cdot)\) is the matrix exponential function.

Definition 1.1. Let \(U = \exp(\alpha \cdot \Sigma)/\text{tr}\exp(\alpha \cdot \Sigma)\) be the optimizer of (1), for some data set \(\mathcal{X} = X_1, \ldots, X_n \in \mathbb{R}^d\) where \(\Sigma\) is the covariance of \(\mathcal{X}\). The quantum entropy (QUE) scores with parameter \(\alpha\) are given by \(\tau_i = \langle X_i - \bar{\mu}, U(X_i - \bar{\mu}) \rangle\), where \(\bar{\mu}\) is the mean of \(\mathcal{X}\).

Intuitively, the QUE scores will penalize any point which is causing a large eigenvalue in any direction, which should allow us to find more outliers than the naive spectral scores presented above. QUE scores also interpolate between two more naive scoring rules: when \(\alpha = 0\) we have \(U = \text{Id}/d\) and so \(\tau_i = \|X_i - \bar{\mu}\|_2^2\) is the \(l_2\) norm (up to a scaling), while when \(\alpha \rightarrow \infty\) we have \(U \rightarrow vv^\top\) where \(v\) is the top eigenvector of \(\Sigma\), recovering naive spectral scoring. In both experiments and theory we find that choosing \(\alpha\) strictly between 0 and \(\infty\) outperforms either of the extreme choices.

QUE scores are also appealing from a computational perspective: we show that a list of approximate QUE scores \(\tau'_i = (1 \pm 0.01)\tau_i\) can be computed from \(X_1, \ldots, X_n\) in nearly-linear time, by appropriate use of Johnson-Lindenstrauss sketching and efficient computation of the matrix exponential by
We turn to our algorithm for robust mean estimation, deferring details to supplementary material. We find that QUE scoring compares favorably to such local methods in high-dimensional datasets.

We give two very similar algorithms, one for when the distribution of inliers is only assumed to have bounded covariance, and one when the inliers are assumed to be subgaussian. The resulting algorithms are conceptually similar to the following modification of the filter mentioned above: until \(\sum_i \leq O(1) \), compute QUE scores \(\tau_i \), throw out data points \(X_i \) with \(\tau_i \gg 1 \), and repeat. (To obtain provable guarantees, our final algorithms are somewhat more complex: in some iterations we use QUE scores based on certain reweightings of the data learned in previous iterations.)

In Section 1.5 we describe experiments validating the QUE scoring rule on both synthetic and real data sets. We show that it performs especially well by comparison to local-neighborhood methods and to scoring based on only the top eigenvector in data sets where the inliers are close to isotropic (or can be made so by applying data whitening procedures) and in which there are heterogeneous outliers.

1.3 Related work

Robust mean estimation: The study of robust statistics and in particular robust mean estimation began with major works by Anscombe, Huber, Tukey and others in the 1960s \([2,25,12,26]\). The literature on polynomial-time algorithms for robust statistics has exploded in recent years, following works by Diakonikolas et al and Lai, Rao and Vempala giving the first polynomial-time algorithms for robust mean estimation with dimension-independent (or nearly dimension-independent) error \([8,15]\).

A full survey is beyond our scope here – see e.g. the recent theses \([17,24]\) for a thorough account. Particularly relevant to our work is the recent work of Cheng, Diakonikolas, and Ge who design an algorithm for robust mean estimation with running time \(O(nd/\varepsilon^6) \) – the first to achieve nearly linear time for constant \(\varepsilon \) – by appeal to nearly linear time solvers for packing and covering semidefinite programs \([6]\). Our algorithms carry two advantages over this prior work: first, our algorithm runs in nearly linear time for any choice of \(\varepsilon = \varepsilon(n,d) \), and second, because we avoid the \(1/\varepsilon^6 \) scaling and appeal to semidefinite programming, our theoretical ideas lead to a practical method for outlier detection. The techniques of Diakonikolas et al. were later extended to robust covariance estimation \([7]\); it remains an interesting direction to extend our techniques to covariance estimation.

Concurrent work: After this manuscript was initially submitted, we became aware of the concurrent work \([16]\), which also obtains a nearly-linear time algorithm for robust mean estimation of distributions with bounded covariance. The algorithm of \([16]\) also obtains subgaussian confidence intervals (see e.g. \([19]\)), which the algorithm in this work does not. By contrast, the algorithms in our work also obtain improved rates of error with respect to \(\varepsilon \) when the underlying distribution is sub-Gaussian, and our method is sufficiently practical that we are able to implement parts of it to run our experiments on outlier detection. (The method of \([16]\) relies on nearly-linear time solvers for packing/covering semidefinite programs, which are not yet practical.) Finally, implicit in the work \([16]\) is a reduction from arbitrary \(\varepsilon \) to the case \(\varepsilon = 1/100 \); we describe this reduction and some consequences in supplementary material.

Outlier detection Detection of outliers goes back nearly to the beginning of statistics itself \([11]\). Even restricting to the high dimensional case it has a literature too broad to survey here. Much recent work has focused on so-called local outlier factor-based methods, which assign outlier scores based on the local density of other samples near each \(X_i \) – see e.g. \([13,14]\) and further references in \([5]\).

We find that QUE scoring compares favorably to such local methods in high-dimensional datasets like we describe in Section 1.1 – see Sections 1.5 and supplementary material for details.

1.4 Robust mean estimation: results and algorithm overview

We turn to our algorithm for robust mean estimation, deferring details to supplementary material.

Definition 1.2 (\(\varepsilon \)-corrupted samples). Let \(D \) be a distribution on \(\mathbb{R}^d \). We say that \(X_1,\ldots,X_n \) are an \(\varepsilon \)-corrupted set of samples from \(D \) if they are first drawn i.i.d. from \(D \), then modified by an adversary who may adaptively inspect all the samples, remove \(\varepsilon n \) of them, and replace them with arbitrary vectors in \(\mathbb{R}^d \).
Note that ε-corruption is a stronger outlier model than the $(1-\varepsilon)D + \varepsilon N$ mixture model we described in Section [I]. Our algorithms also work in this milder mixture model. Our main theoretical result is:

Theorem 1.1. For every $n, d \in \mathbb{N}$ and $\varepsilon > 0$ there are algorithms \texttt{QUESCORE}_\texttt{FILTER}, s.g.-\texttt{QUESCORE}_\texttt{FILTER} with running time $O(nd)$, such that for every distribution D on \mathbb{R}^d with mean μ and covariance Σ, given n-corrupted samples from D, \texttt{QUESCORE}_\texttt{FILTER} produces $\hat{\mu}$ such that $||\hat{\mu} - \mu||_2 \leq O(\sqrt{\varepsilon}) + O(\sqrt{d/n})$ if $\Sigma \preceq \text{Id}$, and s.g.-\texttt{QUESCORE}_\texttt{FILTER} produces $\hat{\mu}$ such that $||\hat{\mu} - \mu||_2 \leq O(\varepsilon \log(1/\varepsilon) + \sqrt{d/n})$ if D is sub-Gaussian with $\Sigma = \text{Id}$, all with probability at least 0.99.

For the bounded covariance case, the $O(\sqrt{\varepsilon})$ term information-theoretically optimal up to constant factors. The other term, $O(\sqrt{d/n})$, is information-theoretically optimal up to the logarithmic factors in the $O(\cdot)$ even without corruptions. For the sub-Gaussian case, the $O(\varepsilon \log(1/\varepsilon))$ term is believed to be necessary for computationally efficient algorithms (see e.g. the statistical-query lower bound [10]), although that term can be made $O(\varepsilon)$ by using computationally-intractable estimators such as Tukey median, and the latter is information-theoretically optimal [26]. The $\sqrt{d/n}$ term is information-theoretically optimal even without corruptions.

In this section we discuss our algorithm for the bounded-covariance case $\Sigma \preceq \text{Id}$ in the setting that the adversary may not remove samples, leaving technical details and the modifications necessary to handle removed samples and sub-Gaussian D to supplementary material.

Definition 1.3 (Simplified robust mean estimation). Let $S = \{X_1, \ldots, X_n\} \subseteq \mathbb{R}^d$ be a dataset with the property that S partitions into $S = S_g \cup S_b$ with $|S_b| \leq \varepsilon n$ and $E_{i \sim S_g}(X_i - \mu_g)(X_i - \mu_g)^\top \preceq \text{Id}$, where $\mu_g = E_{i \sim S_g} X_i$. Given S, the goal is to find a vector $\hat{\mu}$ with $||\hat{\mu} - \mu||_2 \leq O(\sqrt{\varepsilon})$.

Like prior algorithms for robust mean estimation, ours maintains a weight vector $w_1, \ldots, w_n \geq 0$ with $\sum w_i \leq 1$, initialized to $w_i = 1/n$. The algorithm iteratively decreases the weight of points suspected to be outliers that are causing $||\mu(w) - \mu_g||_2$ to be large. A key insight of recent work on robust mean estimation is that it suffices to find weights w which place almost as much mass on S_g as does the uniform weighting and whose empirical covariance is small. This is formalized in the following lemma. For a weight vector w, let $|w| = \sum w_i$, $\mu(w) = \frac{1}{|w|} \sum w_i X_i$, and $M(w) = \frac{1}{|w|} \sum w_i (X_i - \mu(w))(X_i - \mu(w))^\top$. Let $\|M\|_2$ be the spectral norm of a matrix M.

Lemma 1.2 (Implicit in prior work). Let $S = \{X_1, \ldots, X_n\}$ be as in Definition 1.3. Suppose that w is a weight vector such that $\|M(w)\|_2 \leq O(1)$ and w is mostly good, by which we mean $|\frac{1}{n} I_{S_g} - w| \leq \frac{1}{2} |I_{S_g} - w|$, where I_{S_g}, I_{S_b} are the indicators of S_g, S_b and w_g, w_b are w restricted to S_g, S_b, respectively. (Intuitively, w is mostly good if it results by removing from the uniform weighting I_{S_g} more weight from S_b than from S_g.) Then $\|\mu(w) - \mu_g\|_2 \leq O(\sqrt{\varepsilon})$.

Lemma 1.2 captures the following geometric intuition: if the bad points S_b receive enough weight in w to cause $\|\mu(w) - \mu_g\|_2 \gg \sqrt{\varepsilon}$, then an $O(\varepsilon)$-fraction of the mass of w is on X_i which are unusually correlated with the vector $\mu(w) - \mu_g$, which leads to a large maximum eigenvalue in $M(w)$. Prior works employ a variety of methods to find a mostly good weight vector w with $\|M(w)\|_2 \leq O(1)$. Perhaps the simplest is the filter of [8], which iterates: While $\|M(w)\|_2 \gg 1$, compute its top eigenvector v and naive spectral scores $\tau_i = \langle X_i - \mu_g, v \rangle^2$. Throw out X_i with large τ_i and repeat.

The filter ensures that the weight vector it maintains is mostly good because (in an averaged sense) τ_i can be large only for X_i which are corrupted. This is because the (weighted) sum of all scores $\sum w_i \tau_i = \langle M(w), vv^\top \rangle \gg 1$, while the contribution to this sum from S_g has $\sum_{i \in S_g} w_i \tau_i \approx \langle \frac{1}{n} \sum_{i \in S_g} (X_i - \mu_g)(X_i - \mu_g)^\top, vv^\top \rangle \leq 1$. (Here we ignore some details about centering X_i at μ_g rather than $\mu(w)$.) Thus, the τ_i from S_b must make up almost all of $\sum w_i \tau_i$. Simple approaches to removing or downweighting X_i with large τ_i then remove strictly more weight from S_b than from S_g.

However, filtering based on naive spectral scores alone faces a barrier to achieving nearly-linear running-time. If the corruptions S_b are split among many orthogonal directions, the naive spectral

\footnote{Some prior algorithms, e.g. the filter of [8], instead iteratively throw out points suspected to be outliers. However, since those algorithms are (necessarily) randomized, they can also be viewed as weighting points, where the weight of X_i is the probability it has not been thrown out. The algorithm we present here can also be implemented by throwing out points in a randomized fashion – we discuss further in the appendix.}
We first establish a rigorous sense in which downweighting according to outlier scores where \(S \) is \(\{JT\} \). The core of our algorithm is a subroutine, \(D \), vector TRALN (Informal)

Now we sketch the analysis of \(D \), then the quadratic form of \(h \), and regret bound the standard (local norm) for matrix multiplicative weights update rule, leading to a series of mostly good weight vectors \(U \) such that \(\| M(w_t) \|_2 \leq \frac{3}{4} \| M(w_0) \|_2 \). We choose \(U_t \) such that \(\| M(w_t) \|_2 \leq \frac{3}{4} \| M(w_0) \|_2 \). We choose

\[
U_t = \exp \left(\frac{1}{\| M(w) \|_2} \sum_{k=0}^{t-1} M(w_k) \right) \frac{\text{tr} \exp \left(\frac{1}{\| M(w) \|_2} \sum_{k=0}^{t-1} M(w_k) \right)}{\| M(w) \|_2} \cdot \| M(w_t) \|_2 + \frac{\log d}{\alpha}.
\]

where \(w_0 = w \) is the input weight vector, \(U_0 = \text{Id} \), and \(w_t \) results from applying the downweighting of Lemma [1.3 to \(w_{t-1} \) using \(U_t \) (if \(\{ M(w_{t-1}), U_t \} \) obeys Lemma [1.4]). The following lemma is a special case of the standard (local norm) regret bound for matrix multiplicative weights.

Lemma 1.4 (Special case of Theorem 3.1, [1]). For any \(w_0, \ldots, w_T, \) if \(\alpha \leq 1/\| M(w_0) \|_2 \) for all \(t \leq T \), then

\[
\left\| \sum_{t=0}^{T-1} M(w_t) \right\|_2 \leq \sum_{t=0}^{T-1} \langle U_t, M(w_t) \rangle + \alpha \sum_{t=0}^{T-1} \langle U_t, M(w_t) \rangle \cdot \| M(w_t) \|_2 + \frac{\log d}{\alpha}.
\]

Now we sketch the analysis of \(D \).

Claim 1.5 (Informal). If \(w = w_0 \) is mostly good, with \(\| M(w_0) \|_2 \geq 100 \), then \(D \) produces mostly good \(w_T \) with \(\| M(w_T) \|_2 \leq \frac{3}{4} \| M(w_0) \|_2 \).

Proof sketch. Since \(M(w_t) \leq M(w_{t+1}) \) by Lemma [1.3], we have \(\| M(w_t) \|_2 \leq \| M(w_0) \|_2 \) for all \(t \), and hence \(\alpha = 1/\| M(w_0) \|_2 \leq 1/\| M(w_t) \|_2 \) for all \(t \), so \(w_0, \ldots, w_T \) and \(U_0, \ldots, U_{T-1} \) satisfy the hypotheses of Lemma [1.4]. By our choice of \(\alpha \) and \(M(w_T) \leq M(w_t) \) for all \(t \), [4] implies

\[
T \cdot \| M(w_T) \|_2 \leq \sum_{t=0}^{T-1} \langle U_t, M(w_t) \rangle \leq 2 \sum_{t=0}^{T-1} \langle U_t, M(w_t) \rangle + \| M(w_0) \|_2 \cdot \log d.
\]
We create a data set consisting of word embeddings drawn from several Mixed – word embeddings: Sherlock Holmes word long section of a novel (we use spectral outliers). We create a data set consisting of CIFAR10 images some of which have Perturbed – images: Running time: Our overall algorithm only requires $\log(nd)^{O(1)}$ iterations of DecreaseSpectralNorm, and the latter only requires $O(\log(d))$ iterations of downweighting, so we just have to implement downweighting in nearly-linear time. We show in supplemental material that this can be done by avoiding representing any of the matrices U_t explicitly in memory: instead, we maintain only low-rank sketches of them. This leads to some approximation error in computing the QUE scores, but we show that approximations to the QUE scores suffice for all arguments above.

For remaining technical details and full proofs, see Sections 5-9 of supplemental materials.

Algorithm 1 DecreaseSpectralNorm

1: Input: X_1, \ldots, X_n as in Definition 1.3 mostly good weight vector w_0.
2: For iteration $t = 0, \ldots, O(\log(d))$, if $\|M(w_t)\|_2 \leq \frac{3}{2}\|M(w_0)\|_2$, output w_t and halt. Otherwise, let U_t as in 2. If $(U_t, M(w_{t-1})) \leq \frac{1}{4}\|M(w_0)\|_2$, let $w_{t+1} = w_t$. Else let w_{t+1} be the output of downweighting from Lemma 1.3 with U_t.
3: Output w_T.

1.5 Outlier detection: algorithm and experimental results

In this section, we empirically evaluate outlier detection using QUE scoring. QUE scoring can detect (some kinds of) spectral outliers. We call $X \in \mathbb{R}^d$ a spectral outlier with respect to a dataset S if the list of squared projections $((\bar{X}, v_1)^2, \ldots, (\bar{X}, v_d)^2)$ is atypical by comparison to most $Y \in S$, where $\bar{X} = X - \mathbb{E}_{Y \sim S} Y$ and v_1, \ldots, v_d are the eigenvectors of the covariance matrix of S. The QUE scoring approach to aggregate the list $((\bar{X}, v_1)^2, \ldots, (\bar{X}, v_d)^2)$ into one number carries (at least) two distinct advantages: first, the QUE scores of a dataset can be computed approximately in nearly-linear time, and second, the QUE scores weigh $\langle \bar{X}, v_i \rangle^2$ more heavily for larger λ_i, while still incorporating more information than $\langle \bar{X}, v_i \rangle^2$ (which is the naive spectral approach). There may be many other useful ways to go beyond the naive spectral approach to combine the projections $((\bar{X}, v_1)^2, \ldots, (\bar{X}, v_d)^2)$ into a single outlier score – indeed, by varying α QUE scoring already provides a tunable range of methods.

Experimental setup: We must work with data containing well-defined and known inliers and outliers so that we can compare our results to ground-truth. We generate such data sets in three distinct ways, leading to three main experiments. (In supplemental material we also study some outlier-detection data sets appearing in prior work [3].)

Synthetic: We create synthetic data sets in 128 dimensions and $10^3 - 10^4$ samples with an ε-fraction of inhomogeneous outliers in k directions by sampling from a mixture of $k+1$ Gaussians $(1 - \varepsilon)\mathcal{N}(0, Id) + \sum_{i=1}^k \varepsilon_i \frac{1}{2} \mathcal{N}(C\sqrt{k/\varepsilon_i} \cdot e_i, \sigma^2 Id) + \frac{1}{2} \mathcal{N}(-C\sqrt{k/\varepsilon_i} \cdot e_i, \sigma^2 Id)$, where e_1, \ldots, e_k are standard basis vectors, with $C \approx 1$ and $\sigma \ll 1$. The outliers are the samples from $\mathcal{N}(\pm C\sqrt{k/\varepsilon_i}, \sigma^2 Id)$. By varying ε, k and the distribution $\varepsilon_1, \ldots, \varepsilon_k$ of outlier weights, we demonstrate in this simplified model how max-entropy outlier scoring improves on baseline algorithms in the presence of inhomogeneous outliers. We choose the scaling $\sqrt{k/\varepsilon_i} e_i$ because then standard calculations predict that if $\varepsilon_i \approx \varepsilon/k$ the outliers from $\mathcal{N}(\pm C\sqrt{k/\varepsilon_i}, \sigma^2 Id)$ will contribute an eigenvalue greater than 1 to the overall empirical covariance.

Mixed – word embeddings: We create a data set consisting of word embeddings drawn from several sources. Inliers are the 100-dimensional GloVe embeddings [21] of the words in a random $\approx 10^3$ word long section of a novel (we use Sherlock Holmes) and outliers are embeddings of the first paragraphs of k featured Wikipedia articles from May 2019 [27].

Perturbed – images: We create a data set consisting of CIFAR10 images some of which have artificially-introduced dead pixels. Inliers are ≈ 4500 random CIFAR images $X \in \{1, \ldots, 256\}^{1024}$.
Whitening: Scoring methods based on the projection of data points X_i onto large eigenvectors of the empirical covariance work best when those eigenvectors correspond to directions in which many outliers lie. In particular, if Σ_g, the covariance of S_g, itself has large eigenvalues then such spectral methods perform poorly. We assume access to a whitening transformation $W \in \mathbb{R}^{d \times d}$, which captures a small amount of prior knowledge about the distribution of inliers S_g. For best performance W should approximate $W^* = (\Sigma_g)^{-1/2}$ since $W^* X_i$ form an isotropic set of vectors. Of course, to compute W^* exactly would require knowing which points are inliers, but we find that relatively naive approximations suffice. In particular, if a clean dataset Y_1, \ldots, Y_m whose distribution is similar to the distribution of inliers is available, its empirical covariance can be used to find a good whitening transformation W. In our synthetic data we use $W = I_d$. In our word embeddings experiment, we obtain W using the empirical covariance of the embedding of another random section of Sherlock Holmes. In our CIFAR-10 experiment, we obtain W from the empirical covariance of a fresh sample of ≈ 5000 randomly chosen images from CIFAR-10.

Algorithm 2: QUE-Scoring for Outlier Detection

1: Input: dataset $X_1, \ldots, X_n \in \mathbb{R}^d$, optional whitening transformation $W \in \mathbb{R}^{d \times d}$, scalar $\alpha > 0$.
2: Let $X'_i = W X_i$ be whitened data, $\mu = \frac{1}{n} \sum_{i=1}^n X'_i$ and $\Sigma = \frac{1}{n} \sum_{i=1}^n (X'_i - \mu)(X'_i - \mu)^\top$.
3: For $i \leq n$, let $\tau_i = (X'_i^\top \exp(\alpha \Sigma/\|\Sigma\|_2) X'_i) / \text{Tr} \exp(\alpha \Sigma/\|\Sigma\|_2)$. Return τ_1, \ldots, τ_n.

Note on α: in both synthetic and real data we find that $\alpha = 4$ is a good rule-of-thumb choice, consistently resulting in improved scores over baseline methods.

High-dimensional scaling: Implementing Algorithm 2 by explicitly forming the matrix Σ and performing a singular value decomposition (SVD) to compute $\exp(\alpha \Sigma)$ is feasible on relatively low-dimensional data ($d \approx 100$). See supplementary material for discussion and results of a nearly-linear time implementation.
Figure 1: (a-f) We plot the difference between ROCAUC performance of QUE and naive spectral (a-c), ℓ_2 scoring (d-f) on all three data sets, as α varies. Error bars represent one empirical standard deviation in 20 trials. Note that in all three cases the mean improvement in ROCAUC score given by QUE is at least one standard deviation above 0 for a wide range of α. Observe also that in synthetic data (which most closely parallels theory) the optimal α decreases with increasing number of outlier directions, in accord with the need to find a higher-entropy solution to (1).

(g-i) We plot ROCAUC scores of QUE (with $\alpha = 4$) and a variety of other methods as the number of outlier directions increases. Error bars represent one standard deviation over $3 - 4$ trials. Number of trials is small due to large running time requirements of Scikit-learn methods IsolationForest and EllipticEnvelope. The methods "lof" and "knn" are based on nearest-neighbor distances [5]. All except spectral methods perform poorly on synthetic data; as k increases the performance gap between QUE and naive spectral scoring grows. In all plots $\varepsilon = 0.2$. Experiments were generated on a quad-core 2.6Ghz machine with 16GB RAM and an NVIDIA P100 GPU.

References

