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Abstract

We consider active learning of deep neural networks. Most active learning works
in this context have focused on studying effective querying mechanisms and as-
sumed that an appropriate network architecture is a priori known for the problem at
hand. We challenge this assumption and propose a novel active strategy whereby
the learning algorithm searches for effective architectures on the fly, while actively
learning. We apply our strategy using three known querying techniques (softmax
response, MC-dropout, and coresets) and show that the proposed approach over-
whelmingly outperforms active learning using fixed architectures.

1 Introduction

Active learning allows a learning algorithm to control the learning process, by actively selecting
the labeled training sample from a large pool of unlabeled instances. Theoretically, active learning
has a huge potential, especially in cases where exponential speedup in sample complexity can be
achieved [10, 25, 9]. Active learning becomes particularly important when considering supervised
deep neural models, which are hungry for large and costly labeled training samples. For example,
when considering supervised learning of medical diagnoses for radiology images, the labeling of
images must be performed by professional radiologists whose availability is scarce and consultation
time is costly.

In this paper, we focus on active learning of image classification with deep neural models. There are
only a few works on this topic and, for the most part, they concentrate on one issue: How to select
the subsequent instances to be queried. They are also mostly based on the uncertainty sampling
principle in which querying uncertain instances tends to expedite the learning process. For example,
[6] employ a Monte-Carlo dropout (MC-dropout) technique for estimating uncertainty of unlabeled
instances. [24] applied the well-known softmax response (SR) to estimate uncertainty. [21] and
[7] proposed to use coresets on the neural embedding space and then exploit the coreset loss of
unlabeled points as a proxy for their uncertainty. A drawback of most of these works is their heavy
use of prior knowledge regarding the neural architecture. That is, they utilize an architecture already
known to be useful for the classification problem at hand.

When considering active learning of a new learning task, e.g., involving medical images or remote
sensing, there is no known off-the-shelf working architecture. Moreover, even if one receives from
an oracle the “correct” architecture for the passive learning problem (an architecture that induces the
best performance if trained over a very large labeled training sample), it is unlikely that this archi-
tecture will be effective in the early stages of an active learning session. The reason is that a large
and expressive architecture will tend to overfit when trained over a small sample and, consequently,
its generalization performance and the induced querying function (from the overfit model) can be
poor (we demonstrate this phenomenon in Section 5).

To overcome this challenge, we propose to perform a neural architecture search (NAS) in every
active learning round. We present a new algorithm, the incremental neural architecture search
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(iNAS), which can be integrated together with any active querying strategy. In iNAS, we perform
an incremental search for the best architecture from a restricted set of candidate architectures. The
motivating intuition is that the capacity of the architectural class should start small, with limited ar-
chitectural capacity, and should be monotonically non-decreasing along the active learning process.
The iNAS algorithm thus only allows for small architectural increments in each active round. We
implement iNAS using a flexible architecture family consisting of changeable numbers of stacks,
each consisting of a fluid number of Resnet blocks. The resulting active learning algorithm, which
we term active-iNAS, consistently and significantly improves all known deep active learning algo-
rithms. We demonstrate this advantage of active-iNAS with the above three querying functions over
three image classification datasets: CIFAR-10, CIFAR-100, and SVHN.

2 Related Work

Active learning has attracted considerable attention since the early days of machine learning.
The literature on active learning in the context of classical models such as SVMs is extensive
[4, 5, 23, 2, 1, 13], and clearly beyond the scope of this paper. Active learning of deep neural
models, as we consider here, has hardly been considered to date. Among the prominent related
results, we note Gal et al. [6], who presented active learning algorithms for deep models based on
a Bayesian Monte-Carlo dropout (MC-dropout) technique for estimating uncertainty. Wang et al.
[24] applied the well-known softmax response (SR) idea supplemented with pseudo-labeling (self-
labeling of highly confident points) for active learning. Sener and Savarese [21] and Geifman and
El-Yaniv [7] proposed using coresets on the neural embedding space and then exploiting the coreset
loss of unlabeled points as a proxy for their uncertainty. A major deficiency of most of these results
is that the active learning algorithms were applied with a neural architecture that is already known
to work well for the learning problem at hand. This hindsight knowledge is, of course, unavailable
in a true active learning setting. To mitigate this problematic aspect, in [7] it was suggested that the
active learning be applied only over the “long tail”; namely, to initially utilize a large labeled training
sample to optimize the neural architecture, and only then to start the active learning process. This
partial remedy suffers from two deficiencies. First, it cannot be implemented in small learning prob-
lems where the number of labeled instances is small (e.g., smaller than the “long tail”). Secondly, in
Geifman and El-Yaniv’s solution, the architecture is fixed after it has been initially optimized. This
means that the final model, which may require a larger architecture, is likely to be sub-optimal.

Here, we initiate the discussion of architecture optimization in active learning within the context of
deep neural models. Surprisingly, the problem of hyperparameter selection in classical models (such
as SVMs) has not been discussed for the most part. One exception is the work of Huang et al. [13]
who briefly considered this problem in the context of linear models and showed that active learning
performance curves can be significantly enhanced using a proper choice of (fixed) hyperparameters.
Huang et al. however, chose the hyperparameters in hindsight. In contrast, we consider a dynamic
optimization of neural architectures during the active learning session.

In neural architecture search (NAS), the goal is to devise algorithms that automatically optimize
the neural architecture for a given problem. Several NAS papers have recently proposed a number
of approaches. In [28], a reinforcement learning algorithm was used to optimize the architecture
of a neural network. In [29], a genetic algorithm is used to optimize the structure of two types of
“blocks” (a combination of neural network layers and building components) that have been used
for constructing architectures. The number of blocks comprising the full architecture was manually
optimized. It was observed that the optimal number of blocks is mostly dependent on the size of the
training set. More efficient optimization techniques were proposed in [16, 19, 20, 18]. In all these
works, the architecture search algorithms were focused on optimizing the structure of one (or two)
blocks that were manually connected together to span the full architecture. The algorithm proposed
in [17] optimizes both the block structure and the number of blocks simultaneously.

3 Problem Setting

We first define a standard supervised learning problem. Let X be a feature space and Y be a label
space. Let P (X,Y ) be an unknown underlying distribution, where X ∈ X , Y ∈ Y . Based on a
labeled training set Sm = {(xi, yi)} of m labeled training samples, the goal is to select a prediction
function f ∈ F , f : X → Y , so as to minimize the risk R`(f) = E(X,Y )[`(f(x), y)], where
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`(·) ∈ R+ is a given loss function. For any labeled set S (training or validation), the empirical risk
over S is defined as r̂S(f) = 1

|S|
∑|S|
i=1 `(f(xi), yi).

In the pool-based active learning setting, we are given a set U = {x1, x2, ...xu} of unlabeled sam-
ples. Typically, the acquisition of unlabeled instances is cheap and, therefore, U can be very large.
The task of the active learner is to choose points from U to be labeled by an annotator so as to train
an accurate model for a given labeling budget (number of labeled points). The points are selected by
a query function denoted by Q. Query functions often select points based on information inferred
from the current model fθ, the existing training set S, and the current pool U . In the mini-batch
pool-based active learning setting, the n points to be labeled are queried in bundles that are called
mini-batches such that a model is trained after each mini-batch.

NAS is formulated as follows. Consider a class A of architectures, where each architecture A ∈ A
represents a hypothesis class containing all models fθ ∈ A, where θ represents the parameter vector
of the architecture A. The objective in NAS is to solve

A = argmin
A∈A

min
fθ∈A|S

(R`(f)). (1)

Since R`(f) depends on an unknown distribution, it is typically proxied by an empirical quantity
such as r̂S(f) where S is a training or validation set.

4 Deep Active Learning with a Neural Architecture Search

In this section we define a neural architecture search space over which we apply a novel search
algorithm. This search space together with the algorithm constitute a new NAS technique that drives
our new active algorithm.

4.1 Modular Architecture Search Space

Modern neural network architectures are often modeled as a composition of one or several basic
building blocks (sometimes referred to as “cells”) containing several layers [11, 14, 27, 26, 12].
Stacks are composed of several blocks connected together. The full architecture is a sequence of
stacks, where usually down-sampling and depth-expansion are performed between stacks. For ex-
ample, consider the Resnet-18 architecture. This network begins with two initial layers and contin-
ues with four consecutive stacks, each consisting of two Resnet basic blocks, followed by an average
pooling and ending with a softmax layer. The Resnet basic block contains two batch normalized 3×3
convolutional layers with a ReLU activation and a residual connection. Between every two stacks,
the feature maps’ resolution is reduced by a factor of 2 (using a strided convolution layer), and the
width (number of feature maps in each layer, denoted as W ) is doubled, starting from 64 in the first
block. This classic architecture has several variants, which differ by the number and type of blocks
in each stack.

In this work, we consider “homogenous” architectures composed of a single block type and
with each stack containing the same number of blocks. We denote such an architecture by
A(B,Nblocks, Nstacks), where B is the block, Nblocks is the number of blocks in each stack, and
Nstacks is the number of stacks. For example, using this notation, Resnet-18 is A(Br, 2, 4) where
Br is the Resnet basic block. Figure 1(a) depicts the proposed homogeneous architecture.

For a given block B, we define a modular architecture search space as A = {A(B, i, j) : i ∈
{1, 2, 3, ..., Nblocks}, j ∈ {1, 2, 3, ..., Nstacks}}, which is simply all possible architectures spanned
by the grid defined by the two corners A(B, 1, 1) and A(B,Nblocks, Nstacks). Clearly, the space A
is restricted in the sense that it only contains a limited subspace of architectures but nevertheless it
contains Nblocks ×Nstacks architectures with diversity in both numbers of layers and parameters.

4.2 Search Space as an Acyclic Directed Graph (DAG)

The main idea in our search strategy is to start from the smallest possible architecture (in the modu-
lar search space) and iteratively search for an optimal incremental architectural expansion within the
modular search space. We define the depth of an architecture to be the number of layers in the archi-
tecture. We denote the depth ofA(B, i, j) by |A(B, i, j)| = ijβ+α, where β is the number of layers
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(a) (b)

Figure 1: (a) The general proposed architecture contains Nblocks blocks in each stack and Nstacks stacks. (b)
A search space up to A(B, 5, 4) plotted on a grid. The horizontal axis (i) represents the number of blocks; the
vertical axis (j) represents the number of stacks. The arrows represent all the edges of the graph. The number
in each vertex is the number of blocks in the architecture (ij).

in the block B and α is the number of layers in the initial block (all the layers appearing before the
first block) plus the number of layers in the classification block (all the layers appearing after the last
block). It is convenient to represent the architecture search space as a directed acyclic graph (DAG)
G = (V,E), where the vertex set V = {A(B, i, j)}, B is a fixed neural block (e.g., a Resnet basic
block), i ∈ {1, 2, . . . , Nblocks} is the number of blocks in each stack, and j ∈ {1, 2, 3, . . . , Nstacks}
is the number of stacks. The edge set E is defined based on two incremental expansion steps. The
first step, increases the depth of the network without changing the number of stacks (i.e., without
affecting the width), and the second step increases the depth while also increasing the number of
stacks (i.e., increasing the width). Both increment steps are defined so as to perform the minimum
possible architectural expansion (within the search space). Thus, when expanding A(B, i, j) using
the first step, the resulting architecture is A(B, i+ 1, j). When expanding A(B, i, j) using the sec-
ond step, we reduce the number of blocks in each stack to perform a minimal expansion resulting in
the architecture A(B, b ij

j+1c + 1, j + 1). The parameters of the latter architecture are obtained by
rounding up the solution i′ of the following problem,

i′ = argmini′>0 |A(B, i′, j + 1)|
s.t.|A(B, i′, j + 1)| > |A(B, i, j)| .

We conclude that each of these steps are indeed depth-expanding. In the first step, the expansion
is only made along the depth dimension, while the second step affects the number of stacks and
expands the width as well. In both steps, the incremental step is the smallest possible within the
modular search space.

In Figure 1(b), we depict the DAG G on a grid whose coordinates are i (blocks) and j (stacks). The
modular search space in this example is all the architectures in the range A(B, 1, 1) to A(B, 5, 4).
The arrows represents all edges in G. In this formulation, it is evident that every path starting from
any architecture can be expanded up to the largest possible architecture. Moreover, every architec-
ture is reachable when starting from the smallest architectureA(B, 1, 1). These two properties serve
well our search strategy.

4.3 Incremental Neural Architecture Search

The proposed incremental neural architecture search (iNAS) procedure is described in Algorithm 1
and operates as follows. Given a small initial architecture A(B, i0, j0), a training set S, and an ar-
chitecture search space A, we first randomly partition the set S into training and validation subsets,
S′ and V ′, respectively, S = S′ ∪ V ′. On iteration t, a set of candidate architectures is selected
based on the edges of the search DAG (see Section 4.2) including the current architecture and the
two connected vertices (lines 5-6). This step creates a candidate set, A′, consisting of three models,
A′ = {A(B, i, j), A(B, b ij

j+1c + 1, j + 1), A(B, i + 1, j)}. In line 7, the best candidate in terms
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of validation performance is selected and denoted At = A(B, it, jt). The optimization problem
formulated in line 7 is an approximation of the NAS objective formulated in Equation (1). The al-
gorithm terminates whenever At = At−1, or a predefined maximum number of iterations is reached
(in which case At is the final output).

Algorithm 1 iNAS

1: iNAS(S,A(B, i0, j0), A, TiNAS)
2: Let S′, V ′ be an train-test random split of S
3: for t=1:TiNAS do:
4: i← it−1; j ← jt−1

5:
A′ = { A(B, i, j),

A(B, b ij
j+1c+ 1, j + 1),

A(B, i+ 1, j)}
6: A′ = A′ ∩ A
7:

A(B, it, jt) =
= argminA∈A′ r̂V ′(argminfθ∈A r̂S′(fθ))

8: if A(B, it, jt) = A(B, it−1, jt−1) then
9: break

10: end if
11: end for
12: Return A(B, it, jt)

Algorithm 2 Deep Active Learning with iNAS

1: active-iNAS(U ,A0, A, Q, b, k)
2: t← 1
3: St ← Sample k points from U at random
4: U0 ← U\S1

5: while true do
6: At ← iNAS(S, At−1, A)
7: train fθ ∈ At using S
8: if budget exhausted or Ut = ∅ then
9: Return fθ

10: end if
11: S′ ← Q(fθ, St, Ut, b)
12: St+1 ← St ∪ S′
13: Ut+1 ← Ut\S′
14: t← t+ 1
15: end while

4.4 Active Learning with iNAS

The deep active learning with incremental neural architecture search (active-iNAS) technique is
described in Algorithm 2 and works as follows. Given a pool U of unlabeled instances from X ,
a set of architectures A is induced using a composition of basic building blocks B as shown in
Section 4.1, an initial (small) architecture A0 ∈ A, a query function Q, an initial (passively) labeled
training set size k, and an active learning batch size b. We first sample uniformly at random k
points from U to constitute the initial training set S1. We then iterate the following three steps.
First, we search for an optimal neural architecture using the iNAS algorithm over the search space
A with the current training set St (line 6). The initial architecture for iNAS is chosen to be the
selected architecture from the previous active round (At−1), assuming that the architecture size is
non-decreasing along the active learning process. The resulting architecture at iteration t is denoted
At. Next, we train a model fθ ∈ At based on St (line 7). Finally, if the querying budget allows, the
algorithm requests b new points using Q(fθ, St, Ut, b) and updates St+1 and Ut+1 correspondingly.
Otherwise the algorithm returns fθ (lines 8-14).

4.5 Theoretical Motivation and Implementation Notes

The iNAS algorithm is designed to exploit the prior knowledge gleaned from samples of increasing
size, which is motivated from straightforward statistical learning arguments. iNAS starts with small
capacity so as to avoid over-fitting in early stages, and then allows for capacity increments as labeled
data accumulates. Recall from statistical learning theory that for a given hypothesis class F and
training set Sm, the generalization gap can be bounded as follows with probability at least 1− δ,

R(f)− r̂Sm(f) ≤ O(

√
d log(m/d) + log(1/δ)

m
),

where d is the VC-dimension of F . Recently, Bartlett et al. [3] showed a nearly tight bound for
the VC-dimension of deep neural networks. Let W be the number of parameters in a neural net-
work, let L be the number of layers, and U , the number of computation units (neurons/filters), [3]
showed that the VC dimension of ReLU-activated regression models is bounded as V Cdim(F) ≤
O(L̄W log(U), where L̄ , 1

W

∑L
i=1Wi andWi is the number of parameters from the input to layer

i. As can be seen, the expansion steps proposed in iNAS are designed to minimally expand the VC-
dimension of F . When adding blocks, W , U and L̄ grow linearly. As a result, the VC-dimension
grows linearly. When adding a stack (in the iNAS algorithm), W and U grow sub-exponentially,
and L (and L̄) also grows. Along the active learning session, m grows linearly in incremental steps,
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(a) Softmax response (b) MC-dropout (c) Coreset

Figure 2: Active learning curves for CIFAR-10 dataset using various query functions, (a) softmax response, (b)
MC-dopout, (c) coreset. In black (solid) – Active-iNAS (ours), blue (dashed) – Resnet-18 fixed architecture,
and red (dashed) – A(Br, 1, 2) fixed.

thus, it motivates a linear growth in the VC-dimension (in incremental steps) so as to maintain the
generalization gap bound as small as possible. Alternate approaches that are often used, such as a
full grid-search on each active round, would not enjoy these benefits and will be prone to overfitting
(not to mention that full-grid search could be computationally prohibitive).

Turning now to analyze the run time of active-iNAS, when running with small active learning mini-
batches, it is evident that the iNAS algorithm will only require one iteration at each round, resulting
in only having to train three additional models at each round. In our implementation of iNAS, we
apply “premature evaluation” as considered in [22]; our models are evaluated after TSGD/4 epochs
where TSGD is the total number of epochs in each round. Our final active-iNAS implementation thus
only takes 1.75TSGD for each active round. For example, in the CIFAR-10 experiment TSGD = 200
requires less than 2 GPU hours (on average) for an active learning round (Nvidia Titan-Xp GPU).

5 Experiments

We first compare active-iNAS to active learning performed with a fixed architecture over three
datasets, we apply three querying functions, softmax response, coresets and MC-dropout. Then we
analyze the architectures learned by iNAS along the active process. We also empirically motivate
the use of iNAS by showing how optimized architecture can improve the query function. Finally,
we compare the resulting active learning algorithm obtained with the active-iNAS framework.

5.1 Experimental Setting

We used an architecture search space that is based on the Resnet architecture [11]. The initial block
contains a convolutional layer with filter size of 3 × 3 and depth of 64, followed by a max-pooling
layer having a spatial size of 3 × 3 and strides of 2. The basic block contains two convolutional
layers of size 3 × 3 followed by a ReLU activation. A residual connection is added before the
activation of the second convolutional layer, and a batch normalization [15] is used after each layer.
The classification block contains an average pooling layer that reduces the spatial dimension to
1 × 1, and a fully connected classification layer followed by softmax. The search space is defined
according to the formulation in Section 4.1, and spans all architectures in the range A(Br, 1, 1) to
A(Br, 12, 5).

As a baseline, we chose two fixed architectures. The first architecture was the one optimized for
the first active round (optimized over the initial seed of labeled points), and which coincidentally
happened to be A(Br, 1, 2) on all tested datasets. The second architecture was the well-known
Resnet-18, denoted as A(Br, 2, 4), which is some middle point in our search grid.

We trained all models using stochastic gradient descent (SGD) with a batch size of 128 and momen-
tum of 0.9 for 200 epochs. We used a learning rate of 0.1, with a learning rate multiplicative decay
of 0.1 after epochs 100 and 150. Since we were dealing with different sizes of training sets along
the active learning process, the epoch size kept changing. We fixed the size of an epoch to be 50,000
instances (by oversampling), regardless of the current size of the training set St. A weight decay of
5e-4 was used, and standard data augmentation was applied containing horizontal flips, four pixel
shifts and up to 15-degree rotations.
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(a) Softmax response (b) MC-dropout (c) Coreset

Figure 3: Active learning curves for CIFAR-100 dataset using various query functions, (a) softmax response,
(b) MC-dopout, (c) coreset. In black (solid) – Active-iNAS (ours), blue (dashed) – Resnet-18 fixed architecture,
and red (dashed) – A(Br, 1, 2) fixed.

(a) Softmax response (b) MC-dropout (c) Coreset

Figure 4: Active learning curves for SVHN dataset using various query functions, (a) softmax response, (b)
MC-dopout, (c) coreset. In black (solid) – Active-iNAS (ours), blue (dashed) – Resnet-18 fixed architecture,
and red (dashed) – A(Br, 1, 2) fixed.

The active learning was implemented with an initial labeled training seed (k) of 2000 instances. The
active mini-batch size (b) was initialized to 2000 instances and updated to 5000 after reaching 10000
labeled instances. The maximal budget was set to 50,000 for all datasets1. For time efficiency rea-
sons, the iNAS algorithm was implemented with TiNAS = 1, and the training of new architectures
in iNAS was early-stopped after 50 epochs, similar to what was done in [22].

5.2 Active-iNAS vs. Fixed Architecture

The results of an active learning algorithm are often depicted by a curve measuring the trade-off
between labeled points (or a budget) vs. performance (accuracy in our case). For example, in
Figure 2(a) we see the results obtained by active-iNAS and two fixed architectures for classify-
ing CIFAR-10 images using the softmax response querying function. In black (solid), we see the
curve for the active-iNAS method. The results of A(Br, 1, 2) and Resnet-18 (A(Br, 2, 4)) appear
in (dashed) red and (dashed) blue, respectively. The X axis corresponds to the labeled points con-
sumed, starting from k = 2000 (the initial seed size), and ending with 50,000 . In each active
learning curve, the standard error of the mean over three random repetitions is shadowed.

We present results for CIFAR-10, CIFAR-100 and SVHN. We first analyze the results for CIFAR-
10 (Figure 2). Consider the graphs corresponding to the fixed architectures (red and blue). It is
evident that for all query functions, the small architecture (red) outperforms the big one (Resnet-18
in blue) in the early stage of the active process. Later on, we see that the big and expressive Resnet-
18 outperforms the small architecture. Active-iNAS, performance consistently and significantly
outperforms both fixed architectures almost throughout the entire range. It is most striking that
active-iNAS is better than each of the fixed architectures even when all are consuming the entire
training budget. Later on we speculate about the reason for this phenomenon as well as the switch
between the red and blue curves occurring roughly around 15,000 training points (in Figure 2(a)).

Turning now to CIFAR-100 (Figure 3), we see qualitatively very similar behaviors and relations
between the various active learners. We now see that the learning problem is considerably harder,
as indicated by the smaller area under all the curves. Nevertheless, in this problem active-iNAS

1SVHN contains 73,256 instances and was, therefore, trimmed to 50000.
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