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Abstract

Inner product-based convolution has been the founding stone of convolutional
neural networks (CNNs), enabling end-to-end learning of visual representation. By
generalizing inner product with a bilinear matrix, we propose the neural similarity
which serves as a learnable parametric similarity measure for CNNs. Neural simi-
larity naturally generalizes the convolution and enhances flexibility. Further, we
consider the neural similarity learning (NSL) in order to learn the neural similarity
adaptively from training data. Specifically, we propose two different ways of
learning the neural similarity: static NSL and dynamic NSL. Interestingly, dynamic
neural similarity makes the CNN become a dynamic inference network. By regu-
larizing the bilinear matrix, NSL can be viewed as learning the shape of kernel and
the similarity measure simultaneously. We further justify the effectiveness of NSL
with a theoretical viewpoint. Most importantly, NSL shows promising performance
in visual recognition and few-shot learning, validating the superiority of NSL over
the inner product-based convolution counterparts.

1 Introduction

Recent years have witnessed the unprecedented success of convolutional neural networks (CNNs) in
supervised learning tasks such as image recognition [20], object detection [47], semantic segmenta-
tion [40], etc. As the core of CNN, a standard convolution operator typically contains two components:
a learnable template (i.e., kernel) and a similarity measure (i.e., inner product). One active stream
of works [13, 63, 25, 61, 8, 53, 24, 59, 26] aims to improve the flexibility of the convolution kernel
and increases its receptive field in a data-driven way. Another stream of works [39, 36] focuses on
finding a better similarity measure to replace the inner product. However, there still lacks a unified
formulation that can take both the shape of kernel and the similarity measure into consideration.

To bridge this gap, we propose the neural similarity
learning (NSL) for CNNs. NSL first defines the
neural similarity by generalizing the inner product
with a parametric bilinear matrix and then learns the
neural similarity jointly with the convolution kernels.
A graphical comparison between inner product and
neural similarity is given in Figure 1. With certain Inner Product Static Neural ~ Dynamic Neural
regularities on the neural similarity, NSL can be Similarity Similarity

viewed as learning the shape of the kernel and the Figure 1: Bipartite graph comparison of inner prod-
similarity measure simultaneously. Based on the uct, static neural similarity and dynamic neural sim-
neural similarity, we propose the neural similarity ilarity. A line represents a multiplication operation
network (NSN) by stacking convolution layers with ~ and a circle denotes an element in a vector. Green
neural similarity. We consider two distinct ways to ~ color denotes kernel and yellow denotes input.
learn the neural similarity in CNN. First, we learn

a static neural similarity which is essentially a (regularized) bilinear similarity. By having more
parameters, the static neural similarity becomes a natural generalization of the standard inner product.
Second and more interestingly, we also consider to learn the neural similarity in a dynamic fashion.
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Specifically, we use an additional neural network module to learn the neural similarity adaptively
from the input images. This module is jointly optimized with the CNN via back-propagation. Using
the dynamic neural similarity, the CNN becomes a dynamic neural network, because the equivalent
weights of the neuron are input-dependent. In a high-level sense, CNNs with dynamic neural similarity
share the same spirits with HyperNetworks [18] and dynamic filter networks [28].

A key motivation behind NSL lies in the fact that inner product-based similarity is unlikely to be
optimal for every task. Learning the similarity measure adaptively from data can be beneficial in
different tasks. A hidden layer with dynamic neural similarity can be viewed as a quadratic function
of the input, while a standard hidden layer is a linear function of the input. Therefore, dynamic neural
similarity introduces more flexibility from the function approximation perspective.

NSL aims to construct a flexible CNN with strong generalization ability, and we can control the
flexibility by imposing different regularizations on the bilinear similarity matrix. In this paper, we
mostly consider the block-diagonal matrix with shared blocks as the bilinear similarity matrix in
order to reduce the number of parameters. In different applications, we will usually impose domain-
specific regularizations. By properly regularizing the bilinear similarity matrix, NSL is able to make
better use of the parameters than standard convolutional learning and find a good trade-off between
generalization ability and representation flexibility.

NSL is closely connected to a surprising theoretical result in [16] that optimizing an underdetermined
quadratic objective over a matrix W with gradient descent on a factorization of this matrix leads
to an implicit regularization for the solution (minimum nuclear norm). A more recent theoretical
result in [5] further shows that gradient descent for deep matrix factorization tends to give low-rank
solutions. Since NSL can be viewed as a form of factorization over the convolution kernel, we argue
that such factorization also yields some implicit regularization in gradient-based optimization, which
may lead to more generalizable inductive bias. We will give more theoretical insights in the paper.

While showing strong generalization ability in generic visual recognition, NSL is also very effective
for few-shot learning due to its better flexibility. Compared to initialization based methods [14, 46],
NSL can naturally make full use of the pretrained model for few-shot learning. Specifically, we
propose three different learning strategies to perform few-shot recognition. Besides applying both
static and dynamic NSL to few-shot recognition, we further propose to meta-learn the neural similarity.
Specifically, we adopt the model-agnostic meta learning [14] to learn the bilinear similarity matrix.
Using this strategy, NSL can benefit from the generalization ability of both the pretrained model
and the meta information [14]. Our results show that NSL can effectively improve the few-shot
recognition by a considerable margin.

Our main contributions can be summarized as follows:

e We propose the neural similarity which generalizes the inner product via bilinear similarity.
Furthermore, we derive the neural similarity network by stacking convolution layers with neural
similarity. Although this paper mostly discusses CNNs, we note that NSL can easily be applied
to fully connected networks and recurrent networks.

e We propose both static and dynamic learning strategies for the neural similarity. To order to
overcome the convergence difficulty of dynamic neural similarity, we propose hyperspherical
learning [39] with identity residuals to stablize the training.

e We apply the neural similarity learning to generic visual recognition and few-shot recognition.
For few-shot learning, we propose novel usages of NSL and significantly improve the current
few-shot learning performance.

2 Related Works

Flexible convolution. Dilated (atrous) [61, 8] convolution has been proposed in order to construct
a convolution kernel with large receptive field for semantic segmentation. [13, 25] improve the
convolution kernel for high-level vision tasks by making the shape of kernel learnable and deformable.
[39, 36] provide a decoupled view to understand the similarity measure and propose some alternative
(learnable) similarity measures. Such decoupled similarity is shown to be useful for improving
network generalization and adversarial robustness.

Dynamic neural networks. Dynamic neural networks have input-dependent neurons, which makes
the network adaptively changing in order to deal with different inputs. HyperNetworks [18] uses
a recurrent network to dynamically generate weights for another recurrent network, such that the
weights can vary across many timesteps. Dynamic filter networks [28] generates its filters which



are dynamically conditioned on an input. These dynamic neural networks usually perform poorly in
image recognition tasks and can not make use of any pretrained models. In contrast, the dynamic NSN
performs consistently better than the CNN counterpart, and is able to take advantage of the pretrained
models for few-shot learning. [11] investigates the input-dependent networks by dynamically selecting
filters, while NSN uses totally different approach to achieve the dynamic inference.

Meta-learning. A classic approach [7, 50] for meta-learning is to train a meta-learner that learns
to update the parameters of the learner’s model. This approach has been adopted to learn deep
networks [1, 32, 43, 51]. Recently, There are a series of works [46, 14] that address the meta-
learning problem by learning a good network initialization. Specifically for few-shot learning,
there are initialization-based methods [43, 46, 14, 10], hallucination-based methods [57, 19, 2] and
metric learning-based methods [55, 52, 54]. Besides having very different formulation from the
previous works, NSL also combines the advantages from the initialization-based methods and the
generalization ability from the pretrained model.

3 Neural Similarity Learning

3.1 Generalizing Convolution with Bilinear Similarity

We denote a convolution kernel with size C' x H x V (C for the number of channels, H for the
height and V for the width) as W. We flatten the kernel in each channel separately and then
concatenate them to a vector: W = {W1 W2 WC JERCHV where WF is the flatten
kernel weights of the ¢-th channel. Slmllarly, we denote an input patch of the same size C' x H x V
as X, and its flatten version as X. A standard convolution operator uses inner product W' X to
compute the output feature map in a sliding window fashion. Instead of using the inner product to
compute the similarity, we generalize the convolution with a bilinear similarity matrix:

(W, X) =W ' MX 6))

where M € REHVXCHV denotes the bilinear similarity matrix and is used to parameterize the
similarity measure. In fact, if we requires M to be a symmetric positive semi-definite matrix, it
shares some similarities with the distance metric learning [60]. Although we do not necessarily
need to constrain the matrix M, we will still impose some structural constraints on M in order to
stablize the training and save parameters in practice. To avoid introducing too many parameters in
the generalized convolution operator, we make the bilinear similarity matrix M to be block-diagonal
with shared blocks (there are C blocks in total):

M,
fm(W, X)=w" X @)
M,

where M =diag(Ms,--- , M;) and M is of size HV x HV . Interestingly, the hyperspherical
convolution [39] becomes a special case of this bilinear formulation when M is a diagonal matrix
with a normalizing factor W being the diagonal. Since additional parameters are introduced to

control the similarity measure, we are able to learn a similarity measure directly from data (i.e., static
neural similarity) or learn a neural predictor that can estimate such a similarity matrix from the input
feature map (i.e., dynamic neural similarity). In the paper, we mainly consider two structures for M.

Diagonal/Unconstrained neural similarity. If we require M to be a diagonal matrix, then we end
up with the diagonal neural similarity (DNS). DNS is very parameter-efficient and can be viewed
as a weighted inner product or an element-wise attention. Besides that, DNS is essentially putting
an additional spatial mask over the feature map, so it is semantically meaningful. If no constraint is
imposed on M, then we have the unconstrained neural similarity (UNS) which is very flexible but
requires much more parameters.

3.2 Learning Static Neural Similarity

We first introduce a static learning strategy for the neural similarity. Specifically, we learn the matrix
M jointly with the convolution kernel via back-propagation. An intuitive overview for static neural
similarity is given in Figure 2(a). When M has been jointly learned after training, it will stay fixed
in the inference stage. More interestingly, as we can see from Equation (1) that the neural similarity is
incorporated into the convolution operator via a linear multiplication, we can compute an equivalent
weights for the kernel in advance if the neural similarity is static. Therefore, we can view the new



kernel as M T W. As a result, when it comes to deployment in practice, the number of parameters
used in static NSN is the same as the CNN baseline and the inference speed is also the same.

Learning static neural similarity can be viewed as Neural Similarity Neural Similarity
a factorized learning of neurons. It also shares a

lot of similarities with matrix factorization in the

sense that the equivalent neuron weights W is fac-
torized into into two matrix M " and W. Although Tnput

the original weights and the factorized weights are
mathematica]]y equiva]ent’ they have different be- (a) Static Neural Similarity (b) Dynamic Neural Similarity
haviors and properties during gradient-based opti-  Figure 2: Intuitive comparison between static neural
mization [16]. Recent theories [16, 5, 33] suggest  similarity and dynamic neural similarity.

that an implicit regularization may encourage the

gradient-based matrix factorization to give minimum nuclear norm or low-rank solutions. Besides
that, we also have structural constraints to explicitly regularize the matrix M. Furthermore, we can

also view this static neural similarity convolution as a one-hidden-layer linear network. It has been
shown that such over-parameterization can be beneficial to the generalization [29, 3, 44, 4].

3.3 Learning Dynamic Neural Similarity
3.3.1 Formulation

Besides the static neural similarity, we further propose to learn the neural similarity dynamically.
The intuition behind is that the similarity measure should be adaptive to the input in order to achieve
optimal flexibility. From a cognitive science perspective, it is also plausible to enable the network with
dynamic inference [56, 31]. The difference between static and dynamic neural similarity is shown in
Figure 2. Specifically, the dynamic neural similarity is generated dynamically using an additional
neural network My (-) with parameters 0, namely M= My(X). As a result, learning a dynamic
neural similarity jointly with the network parameters is to solve the following optimization problem
(without loss of generality, we simply use one neuron as an example in the following formulation):

. T
{W,0} = arg min Z L(y:, W Mp(X:)X;) 3)

where y; is the ground truth value for X, and £ is some loss function. Both W and 6 can be
learned end-to-end using back-propagation. Note that, although X; denotes the entire sample here,
X; will become the local patch of the input feature map in CNNs. For simplicity, we consider a
one-neuron fully connected layer instead of a convolution layer. Due to the dynamic neural similarity,
the equivalent weights My (X )T W become a function of the input X and therefore construct a
dynamic neural network. In fact, dynamic networks which generate the neuron weights entirely based
on an additional neural network have poor generalization ability for recognition tasks [18]. In contrast,
our dynamic NSN achieves a dedicate balance between generalization and flexibility by using neuron
weights that are “semi-generated” (i.e., part of the weights are statically and directly learned from
supervisions, and the neural similarity matrix is generated dynamically from the input). Interestingly,
we notice that hyperspherical convolution [39] can be viewed as a special case of dynamic neural
similarity. One can see that its equivalent similarity matrix My (X ) =diag(

also depends on the input feature map but does not have any parameter 6.

1 1 )
winxi  [wilXl]

Hyperspherical learning with identity residuals. In our experiments, we find that naively using a
neural network to predict the neural similarity is very unstable during training, leading to difficultly
in convergence (it requires a lot of tricks to converge). To address the training stability problem,
we propose hyperspherical networks (SphereNet) [39] with identity residuals to serve as the neural
similarity predictor. The convergence stability of hyperspherical learning over standard neural
networks is discussed in [39, 37, 38, 36, 35, 34]. In order to further stablize the training, we learn
the residual of an identity similarity matrix instead of directly learning the entire similarity matrix.
Formally, the neural similarity predictor is written as My (X ) =SphereNet(X;0)+ I where I
is an identity matrix and SphereNet(X; 6) denotes the hyperspherical network with parameter 0
and input X. To save parameters, we can use hyperspherical convolutional networks instead of
hyperspherical fully-connected networks. One advantage of SphereNet is that each element of the
output in SphereNet is bounded between —1 and 1 ([0, 1] if using ReLU), making the similarity matrix
bounded and well behaved. In contrast, the output is unbounded in a standard neural network, easily
making some values of the similarity matrix dominantly large. Most importantly, SphereNet with
identity residuals empirically yields not only more stable convergence but also stronger generalization.



3.3.2 Disjoint and Shared Parameterization in Neural Similarity Predictor

We mainly consider disjoint and shared parameterizations for the dynamic neural similarity predictor.

Dls‘]'om't parameterization. D}SJomt param- -
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network to predict the neural similarity matrix
M. A brief overview is given in Figure 3(a). Disjon 2

Input Output Input Output
Shared parameterization. Assuming that e Conva ’ ’
there exists an intrinsic structure to predict (a) Disjoint Parameterization (b) Shared Parameterization
the neural similarity from the input, we con- Figure 3: Comparison between disjoint and shared parame-
sider a shared neural network that produces terization for dynamic neural similarity predictor.
the neural similarity matrix for different con-
volution kernels (usually convolution kernels of the same size). To address the dimension mismatch
problem of the input feature map, we adopt an adaptation network (e.g., convolution networks or
fully-connected networks) to first transform the inputs to the same dimension. Note that, these
adaptation networks are not shared across different kernels in general, but we can share those adapta-
tion networks for the input feature map of the same size. An intuitive comparison between disjoint
and shared parameterization is given in Figure 3 (Convl and Conv2 denote different convolution
kernels). By sharing the neural similarity prediction networks across different kernels, the number of
parameters used in total can be significantly reduced. Most importantly, this shared neural similarity
network may be able to learn some meta-knowledge about the neural similarity.

3.4 Regularization for Neural Similarity

One of the largest advantages about the neural similarity formulation is that one can impose suitable
regularizations on the neural similarity matrix M in different tasks. It gives us a way to incorporate
our prior knowledge and problem understandings into the neural networks. The regularization on M
controls the flexibility of the neural similarity. If we impose no constraints on M, then it will have
way too many parameters. Although it may be flexible enough, the generalization is not necessarily
good. Instead we usually need to impose some constraints (e.g., the block-diagonal with shared
blocks, diagonal, etc.) in order to save parameters and improve generalization.

Structural regularization. As a typical example, requiring M to be a block-diagonal matrix with
shared blocks is a strong structural regularization. Dilated convolution can be viewed as both
structural and sparsity regularization on M. In fact, more advanced structural regularizations could
be considered. For instance, requiring M to be a symmetric or symmetric positive semi-definite
matrix is also feasible (by using a Cholesky factorization M = LLT where L a learnable lower
triangular matrix) and can largely limit the learnable class of similarity measures. Most importantly,
structural regularizations may bring more geometric and semantic interpretability.

Sparsity regularization. Soft sparsity regularization on the matrix M can be enforced via a ¢;-
norm penalty. One can also impose a hard sparsity constraint to limit the non-zero values in M,
similar to [42]. It is also appealing to enforce sparsity-one pattern on M, because it can construct
efficient neural networks based on the shift operation in [59].

3.5 Joint Learning of Kernel Shape and Similarity

Formulation. NSL is also a unified framework for jointly learning the kernel shape and similarity
measure. If we further factorize M to the multiplication of a diagonal Boolean matrix D and a
similarity matrix R, then the neural similarity can be parameterized as

DR D R
(W, X) =W’ X=w'. : X @
DR D R
Kernel Shape Similarity Measure
where D =diag(dy, - ,dgv) in which d; € {0, 1}, Vi is a Boolean value. D actually controls the

shape of the kernel because it will spatially mask out some elements in the kernel. Specifically,
because the diagonal of D is binary, some elements of M will become zero and therefore the kernel
shape is controlled by D. On the other hand, R still serves as the neural similarity matrix, similar



to the previous M. D can also be viewed as masking out some elements of each column in R.
Interestingly, if we do not require the diagonal of D to be Boolean, then it will become a continuous
spatial mask for the kernel shape.

Optimization. First of all, we only consider D to be static in both static and dynamic NSN. The
optimization of D is non-trivial, because it is a Boolean matrix which is discretized and can not be
optimized directly using gradients. Therefore, we use a heuristic approach to optimize D. Specifically,
we preserve a real-valued matrix D, which is used to construct the Boolean matrix ID. We define
D=I(D,,«a) where Z(v, &) is an element-wise function that outputs 1 if v >« and 0 otherwise. «
is a fixed threshold. We will update D, with the following equation:
t+1 t a'c

o e )
where D,. is only computed in order to update D. In both forward and backward passes, only D
is used for computation, but D, is used to generate D. Essentially, the gradient w.r.t D serves as a
noisy gradient for D,.. Similar optimization strategy has also been employed in [22, 12, 42]. R is
updated end-to-end using back-propagation. It is also easy to dynamically produce D with a neural
network, but we do not consider this case for simplicity.

4 Neural Similarity Networks

After introducing the neural similarity learning of a single convolution kernel, we discuss how to
construct a neural similarity network using this building block. In order to save parameters, we let all
the convolution kernels of the same layer share the same neural similarity matrix, which means that
we require the same convolution layer has the same similarity measure. We will empirically validate
this design choice in Section 7.1. Stacking convolution layers with static (dynamic) neural similarity
gives us static (dynamic) NSN. Note that, static NSN has the same number of parameters as standard
CNN in deployment but yields better generalization ability. Compared to [28], dynamic NSN has
better regularity on the convolution kernel and is also able to utilize the pretrained CNN models.

Training from pretrained models. In order to make use of the pretrained models, we can simply use
the pretrained model as our backbone network (with all the weights loaded). Then we add the static or
dynamic neural similarity modules to the convolutional kernels and train the neural similarity modules
with backbone weights fixed until convergence. Optionally, we can finetune the entire network after
the training of the neural similarity module. In contrast, the other dynamic networks [18, 28] are
not able to take advantage of the pretrained models. Note that, it is not necessary for both static and
dynamic NSN to be trained from pretrained models. They can also be trained from scratch (weights
of both backbone and neural similarity module are optimized from random initialization) and still
yield better result than the CNN baselines.

Training and inference. Similar to CNNs, both static and dynamic NSN can be trained end-to-end
using mini-batch stochastic gradient descent. Apart from that the factorized form with D and R
needs to be optimized using a heuristic approach, the training is basically the same as the standard
CNN. In the inference stage, we can compute all the equivalent weights for static NSN in advance to
speed up inference in practice. For dynamic NSN, the inference is also similar to the standard CNN
with slightly more additional computations from the neural similarity module.

5 Theoretical Insights
5.1 Implicit Regularization Induced by NSL

As mentioned before, NSL can be viewed as a form of matrix multiplication where the weight matrix
W is factorized as M " W' (W' is the new weight matrix and M is the similarity matrix). Such
factorization form not only provides more modeling and regularization flexibility, but it also introduces
an implicit regularization (in gradient descent). The implicit regularization in matrix factorization
is studied in [16]. We first compare the behavior of gradient descent on W and {W’' M} to
observe the difference. We consider a simple example of a one-layer neural network with least
square loss (i.e., linear regression): miny L(W):=1 3" |ly; — W T X;||3 where W € R"*™ is the
weight matrix for neurons, y; € R™ is the target and X; € R" is the i-th sample. The behavior of
gradient descent with infinitesimally small learning rate can be captured by the differential equation:

Wt + VL(W})=0 with an initial condition W, where Wt = dgi/" . For NSL, the objective becomes

mingw arp LW, M) =13 |ly; — W'T M X,||3, so the corresponding differential equations




of gradient descent on W' and M are W/ + V- L(W/, M)=0 and M, +V pr L(W/, M) =0,
respectively (with initial condition W] and My). Therefore, the gradient flows of the standard update
on W and the factorized NSL update on {W’, M} can be expressed as

Standard Derivative: W; = ZZ Xi(yi— W, X)) = ZZ Xi(r))"  (Define r; = y; — W, X;)

. . . v . (6)
NSL Derivative: W, = M, W{ + M W{ = M, M, > Xi(r))" +>_ X, W' Wy

from which we observe that the gradient dynamics of the NSL update is very different from the
gradient dynamics of the standard update. Therefore, NSL may introduce a regularization effect
that is different from the standard update, and we argue that such implicit regularization induced by
NSL is beneficial to the generalization power. [16] conjectures that optimizing matrix factorization
with gradient descent implicitly regularizes the solution towards minimum nuclear norm. [5] extends
the analysis of implicit regularization to deep matrix factorization (i.e., multi-layer linear neural
networks) and shows that multi-layer matrix factorization enhances an implicit tendency towards
low-rank solution. [15, 27] show that gradient descent converges to the maximum margin solution in
linear neural networks for binary classification of separable data. More interestingly, [5] argues that
implicit regularization in matrix factorization may not be captured using simple mathematical norms.

5.2 Connection to Dynamical Systems

Classic dynamic neural unit (DNU) [17] receives not only external inputs but also state feedback
signals from themselves and other neurons. A general mathematical model of an isolated DNU is
given by a differential equation &(t) = —ax(t) + f(w, z(t), u), y(t) =g(x(t)) where x is DNU’s
neural state, w; is the weight vector, w is the external input, f(-) is the nonlinear activation and g(-)
is DNU’s output. As a dynamical system, the output of DNU depends on both the external input
and the output time stamp. The neural state trajectory also depends on the equilibrium convergence
property of DNU. Different from DNU, dynamic NSN does not have the state feedback and self-
recurrence. Instead it realizes the dynamic output with a neural similarity generator that changes the
equivalent weight matrix adaptively based on the input. However, it will be interesting to combine
self-recurrence to NSL, since it can save parameters and strengthen the approximation power.

Recent work [9, 41, 49, 58] shows that many existing deep neural networks can be consider as
different numerical schemes approximating an ordinary differential equation (ODE). NSN with certain
similarity design is also equivalent to approximating ODEs. For example, fapy =W T (W + M) X =
X, +W T MX where W' W =Diag(0,---,0,1,0,---,0) (1 lies in the center location) can be
written as &, 1 =, + At - g, (x,) (i.e., ResNet) where x,, is the input feature map at depth n and
gn () is the transformation at depth n. It is one step of forward Euler discretization of the ODE
x;=g(x,t). Different neural similarity designs correspond to different iterative method for ODEs.

6 Discussions

Connection and comparison to the existing works. Static NSN is a direct generalization from
the standard CNN, and can be viewed as a factorized learning (with optional regularizations) of
convolution kernels. Dynamic NSN can be viewed as a non-trivial generalization of hyperspherical
convolution [39] in the sense that hyperspherical convolution is also input-dependent and can be
viewed as a special case of M being WI . Compared to dynamic filter networks [28], dynamic
NSN achieves a better trade-off between flexiblity and generalization. Dynamic filter networks
are very flexible since the weights are completely generated using another network, but it yields
unsatisfactory image recognition accuracy. In contrast, dynamic NSN imposes strong regularizations
on the weights and is less flexible than dynamic filter networks, but it has much stronger generalization
ability while still being dynamic. When M has no constraints, our dynamic NSN will become
essentially equivalent to the dynamic filter network. [11] proposes to dynamically select filters to
perform inference, while NSL dynamically estimates a similarity measure.

Dynamic NSN is a high-order function of input. Dynamic NSN outputs W ' Mj(X)X. Assum-
ing My(X) is a one-layer neural network, i.e., My(X)=W’X T. Then the one-layer dynamic NSN
is written as W TW’X T X which is a quadratic function of X. In general, My(X) is much more
nonlinear, so one-layer dynamic NSN is naturally a high-order function of the input X . Therefore,
dynamic NSN has stronger approximation ability and flexibility than the standard convolution.

Self-attention as a global dynamic neural similarity. Since self-attention [62] is also a high-order
function of input, it can also be viewed as a form of dynamic neural similarity. We define a novel
global neural similarity that can reduce to self-attention in Appendix B.



7 Applications
7.1 Generic Visual Recognition

Experimental settings. For fair comparison, the backbone network architecture is the same in
each experiment. We will mostly use VGG-like plain CNN architecture. Detailed structures for
baselines and NSN are provided in Appendix A. For CIFAR10 and CIFAR100, we follow the same
augmentation settings from [21]. For Imagenet 2012 dataset, we mostly follow the settings in [30].
Batch normalization, ReLU, mini-batch 128, and SGD with momentum 0.9 are used as default in all
methods. For CIFAR-10 and CIFAR-100, we start momentum SGD with the learning rate 0.1. The
learning rate is divided by 10 at 34K, 54K iterations and the training stops at 64K. For ImageNet, the
learning rate starts with 0.1, and is divided by 10 at 200K, 375K, 550K iterations (finsihed at 600K).

Different neural similarity predictor. We consider two types of Method [[ Error (%)
architectures: CNN and SphereNet [39] for the neural similarity Baseline CNN =73
predictor of dynamic NSN. We experiment on CIFAR-10 and DNS Dynamic NSN (CNN) 7.04
(M is diagonal) is used in NSN. Table 1 shows that SphereNet Dynamic NSN (SN) 6.85

works better than standard CNN as a neural similarity predictor. Itis ~ Table 1: Predictor Network.
because SphereNet has better convergence properties can can stablize

NSN training. In fact, dynamic NSN can not converge if trivially applying CNN to the predictor,
and we have to perform normalization (or sigmoid activation) to the predictor’s final output to make
it converge. In contrast, SphereNet can make dynamic NSN converge easily and perform better.
Therefore, we will use SphereNet as the neural similarity predictor for dynamic NSN by default.

Joint learning of kernel shape and similarity. We now evaluate how Method [ Error (%)
jointly learning kernel shape and similarity can improve NSN. We Bascline CNN 778
use CIFAR-10 in the experiment. For both static and dynamic NSN, Static NSN 7.15
we use DNS (M is a diagonal matrix). For dynamic NSN, we use ]S)‘y“‘s; [SCSI;IS(;\)I 2:2?
SphereNet [39] as the neural similarity predictor. Table 2 show that joint Dynamic NSN (J) 6.64

learning D and R performs better than simply learning M. However,

. . . . . . Table 2: Joint learning.
to be simple, we will still learn a single M in the other experiments. &

Shared v.s. disjoint dynamic NSN. We evaluate the shared and Method [[_Error (%)

disjoint parameterization for the neural similarity predictor. We use Bascline CNN 778

CIFAR-10 in the experiment. For both static and dynamic NSN, =~ Dynamic NSN (Shared) 720
Dynamic NSN (Disjoint) 6.85

we use DNS. Table 3 shows that the shared similarity predictor : —
performs slightly worse than the disjoint one, but the shared one Table 3: Predictor parameterization.
saves nearly half of the parameters used in the disjoint one.

CIFAR-10/100. We comprehensively evaluate both Niethod [ CIFAR-T0_ CIFAR.I00
static and dynamic NSN on CIFAR-10 and CIFAR-100. Baseline CNN 773 3805
All dynamic NSN variants use SphereNet as neural sim- Baseline CNN++ 7.29 28.70
ilarity predictor. Both DNS and UNS are experimented Static NSN w/ DNS 715 28.35

. . . Static NSN w/ UNS 7.38 28.11
for comparison. Because dynamic NSN uses slightly  pynamic NSN w/ DNs 6.85 2781
more parameters than the baseline CNN, we construct _ Dynamic NSN w/ UNS 6.5 28.02

a new baseline CNN++ by making the baseline CNN
deeper and wider such that the number of parameters
is slightly larger than all variants of NSN. The results
in Table 4 verify the superiority of both static and dynamic NSN. Our dynamic NSN outperforms
both baseline CNN and baseline CNN++ by a considerable margin. Moreover, one can observe that
dynamic NSN performs generally better than static NSN, showing that dynamic inference can be
beneficial for the image recognition task. Both DNS and UNS perform similarly on CIFAR-10 and
CIFAR-100, indicating that DNS is already flexible enough for the image recognition task.

Table 4: Error (%) on CIFAR-10 & CIFAR-100.

ImageNet-2012. In order to be parameter-efficient, Nicthod [ TopT  Tops

5 R # params
we evaluate the dynamic NSN with DNS on .the Bascline ONN 77 1911 8o0M
ImageNet-2012 dataset. The backbone network is a Baseline CNN++ 4211 1898  9.71M
VGG-like 10-layer plain CNN, so the absolute perfor- _Dynamic NSNw/DNS [] 40.61 1804  9.6IM

mance is not state-of-the-art. Hov&{ever, the PUrpos€  myple 5: Validation error (%) on ImageNet-2012.
here is to perform apple-to-apple fair comparison. Us-

ing the same backbone network, dynamic NSN is significantly and consistently better than both
baseline CNN and CNN++. Note that, baseline CNN++ is a deeper and wider version of baseline
CNN. The results in Table 5 show that dynamic NSN yields strong generalization ability with the



same number of parameter, and most importantly, the experiments demonstrated that the dynamic
inference mechanism can work well in a challenging large-scale image recognition task.

7.2 Few-Shot Learning

Static NSN. It is very natural to apply static NSN to the few-shot learning. Similar to the finetuning
baseline, we first train a backbone network using the base class data. When it comes to the testing
stage, we first finetune both the static neural similarity matrix and the classifier on the novel class
data and then use the finetuned classifier to make prediction. Note that, in order to use a pretrained
backbone, we need to initialize the neural similarity matrix with an identity matrix. Due to the
strong regularity that we imposed to the mete-similarity matrix, static NSN is able to preserve rich
information from the pretrained model while quickly adapting to the novel class data.

Dynamic NSN. Dynamic NSN is very suitable for the few-shot learning due to its dynamic nature.
Its filters are conditioned on the input. Because dynamic NSN is able to learn a meta-information
about the similarity measure, so its intermediate layers do not need to be finetuned in the testing
stage. From a high-level perspective, dynamic NSN shares some similarities with MAML [14] in
the sense that dynamic NSN learns to transform its filters with a projection matrix, while MAML
transforms its filters using gradient updates during inference. We directly train the dynamic NSN on
the base class data. In the testing stage, we first retrain the classifiers using the novel class data, and
then classify the query image using the dynamic NSN and the retrained classifier.

Meta-learned static NSN. Inspired by MAML [14], we propose to meta-learn the neural similarity.
We pretrain the network on the base classes with identity similarity and then meta-learned the neural
similarity and classifiers similar to MAML. The meta-learned static NSN dynamically transforms its
filters via projection using the gradients, similar to MAML. The meta-optimization is given by

min Z( ).cn (farr) st M= M —nVarLr, (far) (7
Ti~p(T

which aims to learn a good initialization for the static neural similarity matrix. During testing, the
procedure exactly follows MAML [14] except that the meta-learned static NSN only updates the
neural similarity matrix with gradients. The pretrained model is recently shown to perform well with
certain normalization [10]. Meta-learned static NSN is able to take full advantage of the pretrained
model, and can be viewed as an interpolation between the pretrained model and MAML [14]. In fact,
dynamic neural similarity can be also meta-learned similarly, which is left for future investigation.

Experlment on Mlnl-ImageNet. The exper- Niethod [ Backbone 5-shot Accuracy
lmeptal pI‘OtOCOl is the same a.S [46’ 14] FOl' Finetuning Baseline [46] CNN-4 49.79 + 0.79
lowing [46], we use 4 convolution layers with ~ Nearest Neightbor Baseline [46] CNN-4 51.04 £ 0.65
o MatchingNet [46] CNN-4 55314073
32 3 x 3 filters per layer. 'Batch normaliza Protolet [52] CNNA 2890 £ 0.66
tion [23], ReLU non-linearity and 2 x 2 pool- MAML [14] CNN-4 63.15 + 091
ing are used. For all the NSN variants, we use RelationNet [54] CNN-4 65.32 4 0.70
i Static NSN (ours) CNN-4 65.74 £ 0.68
the b,eSt setup and hyperparameters. The re Meta-learned static NSN (ours) CNN-4 66.21 £ 0.69
sults in Table 6 show that all of our proposed Dynamic NSN (ours) CNN-4 71.26 + 0.65
three few-shot learning strategies work rea- Discriminative k-shot [6] ResNet-34  73.90 £ 0.30

sonably well. The dynamic NSN outperforms Tadam [45] ResNet-12 76.7 4 0.3

the other competitive methods by a consid- LEO [48] ResNet-28  77.59 + 0.12
p y Dynamic NSN (ours) CNNO 7744 £ 0.63

erably large margin. Static NSN works bet-
ter than most exisint methods. Meta-learned Table 6: Few-shot classification on Mini-Imagenet test set.
static NSN also shows obvious advantages

over its direct competitor MAML. Moreover, we also compare with the recent state-of-the-art method
LEO [48] which uses features from ResNet-28. Our dynamic NSN with the CNN-9 backbone
achieves 77.44% accuracy, which is comparable to LEO but ours has much fewer network parameters.
This experiment further validates the strong generalization ability of all NSN variants.

8 Concluding Remarks

We have proposed a general yet powerful framework to generalize traditional convolution with
the neural similarity. Our framework can capture the similarity structure that lies in our data of
interest, and regularizing the similarity to accommodate the nature of input dataset may yield better
performance. Our experiments on image recognition and few-shot learning show the potential of our
framework being flexible, generalizable and interpretable. This framework can be further applied to
more applications, e.g., semantic segmentation, and may inspire different threads of research.
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