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Abstract

Super resolution (SR) methods typically assume that the low-resolution (LR) image
was downscaled from the unknown high-resolution (HR) image by a fixed ‘ideal’
downscaling kernel (e.g. Bicubic downscaling). However, this is rarely the case
in real LR images, in contrast to synthetically generated SR datasets. When
the assumed downscaling kernel deviates from the true one, the performance of
SR methods significantly deteriorates. This gave rise to Blind-SR – namely, SR
when the downscaling kernel (“SR-kernel”) is unknown. It was further shown
that the true SR-kernel is the one that maximizes the recurrence of patches across
scales of the LR image. In this paper we show how this powerful cross-scale
recurrence property can be realized using Deep Internal Learning. We introduce
“KernelGAN”, an image-specific Internal-GAN [29], which trains solely on the LR
test image at test time, and learns its internal distribution of patches. Its Generator
is trained to produce a downscaled version of the LR test image, such that its
Discriminator cannot distinguish between the patch distribution of the downscaled
image, and the patch distribution of the original LR image. The Generator, once
trained, constitutes the downscaling operation with the correct image-specific
SR-kernel. KernelGAN is fully unsupervised, requires no training data other than
the input image itself, and leads to state-of-the-art results in Blind-SR when plugged
into existing SR algorithms. 1

1 Introduction

The basic model of SR assumes that the low-resolution input image ILR is the result of down-scaling
a high-resolution image IHR by a scaling factor s using some kernel ks (the "SR kernel"), namely:

ILR = (IHR ∗ ks) ↓s (1)

The goal is to recover IHR given ILR. This problem is ill-posed even when the SR-Kernel is assumed
known (an assumption made by most SR methods – older [8, 32, 7] and more recent [5, 20, 19, 21, 38,
35, 12]). A boost in SR performance was achieved in the past few years introducing Deep-Learning
based methods [5, 20, 19, 21, 38, 35, 12]. However, since most SR methods train on synthetically
downscaled images, they implicitly rely on the SR-kernel ks being fixed and ‘ideal’ (usually a Bicubic
downscaling kernel with antialiasing– MATLAB’s default imresize command). Real LR images,
however, rarely obey this assumption. This results in poor SR performance by state-of-the-art
(SotA) methods when applied to real or ‘non-ideal’ LR images (see Fig. 1a).

The SR kernel of real LR images is influenced by the sensor optics as well as by tiny camera motion
of the hand-held camera, resulting in a different non-ideal SR-kernel for each LR image, even if taken
by the same sensor. It was shown in [26] that the effect of using an incorrect SR-kernel is of greater
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(a) Comparison to SotA SR methods (SR×4):
Since they train on ’ideal’ LR images, they perform poorly on real non-ideal LR images.

Bicubic EDSR+ RCAN+ KernelGAN(Ours) Ground
Truth HRLR Input image interpolation [21] [38] SR method: [30]

(b) Comparison to SotA Blind-SR methods (SR×4):

PDN WDSR Kernel of [24] KernelGAN(Ours) Ground
Truth HRLR Input image [34] [36] SR method:[30] SR method:[30]

Figure 1: SR×4 on real ‘non-ideal’ LR images (downloaded from the internet, or downscaled by an
unknown kernel). Full images and additional examples in supplementary material (please zoom in on screen).
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