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Abstract

Training of deep learning models depends on gradient descent and end-to-end
differentiation. Under the slogan of differentiable programming, there is an increas-
ing demand for efficient automatic gradient computation for emerging network
architectures that incorporate dynamic control flow, especially in NLP.
In this paper we propose an implementation of backpropagation using functions
with callbacks, where the forward pass is executed as a sequence of function
calls, and the backward pass as a corresponding sequence of function returns. A
key realization is that this technique of chaining callbacks is well known in the
programming languages community as continuation-passing style (CPS). Any
program can be converted to this form using standard techniques, and hence, any
program can be mechanically converted to compute gradients.
Our approach achieves the same flexibility as other reverse-mode automatic differ-
entiation (AD) techniques, but it can be implemented without any auxiliary data
structures besides the function call stack, and it can easily be combined with graph
construction and native code generation techniques through forms of multi-stage
programming, leading to a highly efficient implementation that combines the per-
formance benefits of define-then-run software frameworks such as TensorFlow
with the expressiveness of define-by-run frameworks such as PyTorch.

1 Introduction

Differentiable programming (Olah, 2015; LeCun, 2018) refers to a programming model where
neural networks are truly functional blocks with data-dependent branches and recursion, while
at the same time being trainable with backpropagation and gradient descent (Rumelhart et al.,
1986). A programming model of such generality requires both expressivity and efficiency from the
backpropagation framework. However, the current generation of tools such as TensorFlow (Abadi
et al., 2015), and PyTorch (Paszke et al., 2017) trade off one for the other.

Inspired by the pattern of forward and backward passes, this paper proposes an implementation of
backpropagation using functions with callbacks. Each elementary operation becomes a function
call. The forward computation for this operation is performed on function entry, and the backward
computation on function exit. In between, the result of the forward computation is passed to a
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callback, which executes the downstream (forward and backward) computations (Figure 1). The use
of callbacks provides modularity and enables programmers to chain arbitrary operations together.
While programming in this style with explicit callbacks is of course cumbersome, a key realization is
that this programming pattern has been well known in the programming languages community for
more than 50 years under the name continuation-passing style (CPS) (van Wijngaarden, 1966), and
there is a simple and well-studied transformation that converts any program into CPS (Fischer, 1972).

This approach achieves the same flexibility as other define-by-run reverse-mode automatic differ-
entiation (AD) techniques (Wengert, 1964; Speelpenning, 1980) and naturally extends to loops,
subroutines, and recursive functions. Unlike other approaches, however, it can be implemented
without any auxiliary data structures (often called trace or tape). We implicitly use the call stack as
our data structure, with the benefit that the memory is automatically managed and out-of-scope data
are freed when no longer needed. Using delimited continuations and shift/reset control operators
(Danvy and Filinski, 1990), we can make the callbacks implicit, too, and provide an implementation
of reverse-mode AD solely through operator overloading.

Our approach can further be combined with existing graph construction and native code generation
techniques to provide an expressive define-then-run computation model, including in-graph functions
and recursion. In particular, we employ an orthogonal concept called multi-stage programming
(staging, Taha and Sheard (2000)). Inspired by the natural observation that most programs operate
in separate stages due to data availability and frequency of operation (Jørring and Scherlis, 1986),
programming language researches developed tools where a program can be partially evaluated,
with code generated for the unevaluated part. The generated code can be in a different (potentially
low-level) language, thus removing abstractions (objects, higher-order functions) and improving
efficiency (Taha and Sheard, 2000). Specifically, by utilizing Lightweight Modular Staging (LMS)
(Rompf and Odersky, 2010), we create a highly efficient and expressive framework dubbed Lantern
which supports both unrestricted control flow as found in PyTorch, as well as the computation graph
reification in, e.g., TensorFlow.

We explain the requisite programming languages concepts and present evaluation results as follows:

• Section 2 shows how delimited continuations naturally support reverse-mode AD.
• Section 3 explains how multi-stage programming orthogonally brings efficiency.
• Section 4 evaluates Lantern and demonstrates efficiency and expressivity of our framework.

Finally, Section 5 discusses related work and offers concluding thoughts.

2 Differentiable Programming and Reverse-Mode AD

2.1 Reverse-Mode AD, Explained

Let v1, v2, ..., vk be the nodes in a computation graph G in a topological ordering (i.e., every node
corresponds to some function fi that depends on results of earlier, parental nodes as parameters). For
neural networks, vk reflects the loss L, which is the target of optimization. During reverse-mode AD,
the forward pass first traverses the nodes from v1 to vk, computing the result (value) of each node.
The backward pass then traverses the nodes from vk to v1, computing the gradient dL/dvi for each
node, which defines the effect of tiny changes of vi on the value of L. While dL/dvk is 1.0, dL/dvi
for i < k are calculated by the chain rule:

dL
dvi

=
∑

j∈Out(i)

(
∂fj
∂vi

)T
dL
dvj

Here, Out(i) defines the output nodes of node vi in graph G, and ∂fj/∂vi is the Jacobian matrix of
the partial derivative of fj to vi.

2.2 Reverse-Mode AD as Functions with Callbacks
Normally, reverse-mode AD is implemented with the help of auxiliary data structures. For instance,
the small example

v1 = 0.5 v2 = 0.4 v3 = v1 + v2 v4 = v2 ∗ v3 v5 = tanh(v4)

can be represented as the computation graph in Figure 1 (top).

2



The gray arrows (above each node) form the forward pass, and the red arrows (below each node) form
the backward pass. Each node is represented as a rounded square, with the upper half containing
the formula for computation (N/A for nodes with initial values), and the lower half containing the
value (left) and the gradient (right). The formulas for the backward pass are labeled on the red
arrows, and gradients from multiple arrows are summed together. Operations of formulas can be
computed by a graph iterator which performs a forward pass first, then a backward pass. This is
similar to the implementation of TensorFlow and PyTorch, though TensorFlow creates new nodes for
backpropagation by explicit graph transformation/optimization.

Inspired by the “There and Back Again” (Danvy and Goldberg, 2005) pattern of reverse-mode AD, a
key observation is that we can profitably perform these operations as a sequence of function calls,
one for each elementary operation (Figure 1, bottom). In the lower section of the figure, the executor
of every operation is explicitly labeled. The first v1 + v2 operation is performed by the caller of the
whole function (possibly grad, denoted g). g calls the first callback k1, which handles the v2 ∗ v3
operation, and calls the second callback k2. k2 then computes tanh(v4) and calls the last callback
k3. k3 only needs to set the gradient of v5 as 1.0. After k3 returns, k2 updates the gradient of v4
by the chain rule, and returns to k1, which updates the gradients of v2 and v3. Upon k1’s return, g
updates the gradients of v1 and v2. The scopes of each function/callback are also highlighted by
dashed boxes, showing nested scopes of the chain of callbacks. Note that although nodes are retained
in the figure for callbacks, it is easy to see that the values and gradients can be saved on the function
call stack: no auxiliary heap-allocated data structures are needed.

Figure 1: Reverse-Mode AD represented as graph nodes (top) and reverse-Mode AD via callbacks
(bottom)

With this dual view of chains of nodes and nested function calls (Figure 1), we can see that the call
path implements the forward propagation, and the return path implements the backward propagation.
Inspired by this idea, we show the Scala implementation of this callback version of reverse-mode AD
in Figure 2.

2.3 Implementation Using Operator Overloading

Our first implementation in Scala is mechanical, directly following the drawing in Figure 1. As
shown in the left column of Figure 2, we define a class NumR with two fields: an immutable value x,
and a mutable gradient d. Each operator in NumR takes a callback k which consumes the intermediate
NumR (y) as a parameter and handles the following forward pass and the leading backward pass. Once
the callback k returns, the gradient of y (the correct value of y.d) should have been computed. Then
the operator updates the gradients of the dependent values as side effects, using the value of y.d. On
the right column is the definition of the grad operator, an example, and the expected unit test. Note
that in the definition of grad we provide the final callback of (r => r.d = 1.0), which is to set up the
gradient of the final NumR as 1.0. To aid in presentation, the occurrences of callbacks appear shaded.
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// differentiable number type
class NumR(val x: Double, var d: Double) {

def +(that: NumR) = { (k: NumR=>Unit) =>

val y = new NumR(x + that.x, 0.0); k(y)

this.d += y.d; that.d += y.d
}

def *(that: NumR) = { (k: NumR=>Unit) =>

val y = new NumR(x * that.x, 0.0); k(y)

this.d += that.x * y.d; that.d += this.x * y.d
}
...

}

// differentiation operator

def grad(f:NumR => (NumR=>Unit)=>Unit )(x:Double)={

val z = new NumR(x, 0.0)
f(z)(r => r.d = 1.0)
z.d

}
// example: 2*x + x*x*x
val df = grad { x =>

(2*x) (y1=> ( x*x )(y2=> (y2 *x )(y3=> y1 + y2)))

}
// unit test
forAll { x => df(x) = 2 + 3*x*x }

Figure 2: Automatic Differentiation in Scala: reverse-mode AD by callbacks and operator overloading
(left), and the grad function definition and use case (right). Handling of continuations is highlighted.
Code first appeared in Wang and Rompf (2018)

Unfortunately, the example (last shaded box in Figure 2) is coded in a rather cumbersome way, simply
because we must explicitly construct the callbacks for each step (implicit conversion of Int to NumR is
elided). A natural question, then, is: Could this be simplified or automated?

2.4 Implementing Reverse-Mode AD with Continuations

This idea of introducing callbacks for every function result is actually a well-known program transfor-
mation, named continuation-passing style (CPS), which has been studied in the PL community for
more than 50 years (van Wijngaarden, 1966).

The concept of continuations is ubiquitous in programming: an if-branch is the choice between two
continuations, an exception or goto is an abortion/change of continuation, etc. However, in a normal,
“direct style” of programming, continuations are maintained implicitly by function calls/returns and
other control flow. By contrast, CPS manages control flow by passing continuations explicitly (every
function has an extra parameter called continuation k). For instance, while a direct-style function
returns its result directly to the calling function, a CPS function takes as an argument “the rest of
the computation” as a function (i.e, continuation), and calls the continuation with the result as a
parameter. CPS is often used in compilers as an intermediate representation of programs (Appel,
1992). The transformation of direct-style programs into CPS is also a well-known procedure Fischer
(1993), shown below (Figure 3, upper).

Transformation to continuation-passing style:

[[if (e1) e2 else e3]] k = [[e1]](v1 ⇒ if (v1) [[e2]] k else [[e3]] k)
[[while (e1) e2; e3]] k = def loop() = {[[e1]] (v ⇒ if (v)[[e2]] loop else [[e3]] k)}; loop()

[[def f(n1, ...) = e1; e]] k = def f(n1, ..., k
′) = {[[e1]] k′}; [[e]] k

[[e(e1, ...)]] k = [[e]] (v ⇒ ([[e1]] (v1 ⇒ (...⇒ v(v1, ..., k)...))))

Transformation of delimited control operators shift/reset:

[[shift(k ⇒ e)]] k′ = def k(r, k′′) = k′′(k′(r)); [[e]](x⇒ x)
[[reset(e)]] k′ = k′([[e]](x⇒ x))

Figure 3: Program Transformation between direct style (left) and CPS (right). [[e]] k denotes a
program e in direct style, transformed with given continuation k.

The rules in Figure 3 transform direct-style programs to CPS, where the continuations are always
maintained as tail calls, which never return to the callers. However, this is insufficient for the callbacks
needed in reverse-mode AD, as these callbacks must return. This can be achieved through the use of
delimited continuations (Felleisen, 1988), which, as the name suggests, are continuations up to certain
boundaries, defined by the control delimiters. When arriving at the boundaries, the continuations
return to their caller, possibly with return values. In that sense, delimited continuations are more like
normal functions, and they do not have to be tail calls. The remaining key difference is that delimited
continuations are constructed from part of the program.
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Delimited continuations can be generated from direct-style programs supplemented with control
operators. Several forms of control operators exist, but we will use the pair with the closest relation
to CPS, named shift/reset (Danvy and Filinski, 1990). The formal rules are shown in Figure 3
(bottom), which lay out the form of transformations for the shift and reset operators. Modern
tools (Rompf et al., 2009) further simplify the transformations for delimited continuations to selective
CPS transformation, where program fragments without shift/reset are kept in direct style (no need
for the k′′ parameter in the k function in shift transformation rule).

Generally speaking, the reset operator defines the boundary of the delimited continuations, while the
shift operator captures the delimited continuations. Their roles can be further explained using the
following toy example.

val a = 1 + reset { 10 + shift { k => k(k(100)) + 1000 } }

The delimited continuation is the program between shift and reset (the shaded box above), which
can be embodied by replacing the shift construct (the white box above) as function parameter, and
rewriting the reset block as the function, i.e., continuation (the shaded box below), and then passed
to the shift block.

val a = 1 + { (k => k(k(100)) + 1000) (x => 10 + x) }

Then the delimited continuation is captured by the shift construct, as the continuation parameter k in
the shift block. The final result is then the evaluation of the body of shift.

val a = 1 + { (10 + (10 + 100)) + 1000 } = 1121

In this way, the program is still written in direct style (with shift and reset operators). However, the
automated transformation will reorganize it into CPS format, realizing delimited continuations. Thus,
the cumbersome example of Figure 2 can be simplified by using shift and reset in construction. We
provide this implementation below (Figure 4).
// differentiable number type
class NumR(val x: Double, var d: Double) {

def +(that: NumR) = shift {(k:NumR=>Unit)=>

val y = new NumR(x + that.x, 0.0); k(y)

this.d += y.d; that.d += y.d
}

def *(that: NumR) = shift {(k:NumR=>Unit)=>

val y = new NumR(x * that.x, 0.0); k(y)

this.d += that.x * y.d; that.d += this.x * y.d
}
...

}

// differentiation operator

def grad(f: NumR => NumR @cps[Unit] )(x: Double) = {

val z = new NumR(x, 0.0)

reset { f(z).d = 1.0 }

z.d
}
// example
val df = grad(x => 2*x + x*x*x)
// unit test
forAll { x =>
df(x) = 2 + 3*x*x

}

Figure 4: Automatic Differentiation in Scala: reverse-mode using delimited continuations with
shift/reset operators (left), and grad function definition and use case (right). Code first appeared
in Wang and Rompf (2018)

In this figure, the occurrences of shift/reset and delimited continuations are again shaded. The
shift/reset program transformation is handled by the Scala compiler accordingly (Rompf et al.,
2009). The implementation of NumR with shift/reset operators is almost identical to NumR in Figure 2
(modulo added shift). Note that a shift operator returns a CPS-annotated type A@cps[B, C],
meaning that the continuation k in shift is of type (A⇒ B), and the body of shift is of type C. When
type B equals C, we denote it as A@cps[B]. Importantly, handling of continuations is confined to
implementation logic and does not leak into user code (see the example in Figure 4).

Our approach has some similarity with the seminal paper by Pearlmutter and Siskind (2008) who
also formalized reverse-mode AD in a functional style. However, several important aspects are
substantially different. For one, their implementation uses nonlocal code transformations to return a
pair consisting of a value and a backpropagator: x 7→ (v, dv/dy 7→ dx/dy) for back propagation. We
apply delimited continuations using shift/reset operators, which hide the nonlocal transformations
from the developer, so that reverse-mode AD can be implemented purely via operator overloading.
Their approach is purely functional (no variables are mutated during computations), which needs
special care (a channel) if a lambda uses variables from an outer scope. On the other hand, we allow
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limited mutation of gradients (gradient accumulation), which offers elegant implementation at the
slight (and worthwhile, in our opinion) trade-off of functional purity. Moreover, all closures and
mutable variables in our approach can be allocated on the stack, which serves as an implicit data
structure for intermediate values. Other current approaches require at least some use of heap memory.

Higher-order gradients can also be computed with our approach. One technical caveat is that
second-order shift/reset operators are not available in Scala, thus we cannot naively nest our
gradient computations, though it can be achieved in a different language which supports higher-order
shift/reset. However, even in Scala, we can get second-order gradients (Hessians) by combining
reverse-mode AD with forward-mode AD. We elide forward-mode AD in this paper, as it can be
easily implemented by operator overloading in many languages. By applying forward-mode AD on
top of reverse-mode AD (changing the Double in the code snippets to a pair of Doubles, representing
the value and tangent, respectively), we can efficiently compute Hessians (or the Hessian vector dot
product, for any given vector).

3 Code Generation via Multi-Stage Programming

Via delimited continuations, we get an expressive and define-by-run framework, similar to PyTorch.
However, TensorFlow and other define-then-run frameworks benefit from separating graph con-
struction and graph execution into two stages, so that graph transformations/optimizations can be
performed to target hardware-specific code (i.e., GPUs or TPUs). As such, we examine the possibility
of utilizing this concept.

A key insight in understanding how to adopt this paradigm is that TensorFlow graph construction
is similar to a 30-year-old PL concept called multi-stage programming (staging, Taha and Sheard
(2000)). A TensorFlow program can blend normal Python code with graph construction, just like the
well-established staging tool called Lightweight Modular Staging (LMS) (Rompf and Odersky, 2010)
can blend normal Scala program execution with IR construction (this IR (intermediate representation)
is not executed, but rather used to generate code for the next stage).
# graph construction
import tensorflow as tf
a = tf.constant(0)
b = lambda i: tf.less(i, 10)
c = lambda i: tf.add(i, 1)
r = tf.while_loop(b, c, [i])

// graph construction
import lms._

val a: Rep[Float] = 0.0
while (a < 10)
a += 1

val r = a

// generated code
float x0 = 0.0;
while (x0 < 10) {
x0 += 1

}
float x1 = x0;

Figure 5: TensorFlow graph construction (left), LMS IR construction (middle), and code generated
from LMS (right).
We show a simple TensorFlow graph construction example and corresponding LMS code generation in
Figure 5. Instead of tf.constant, LMS uses higher-order types (Rep[T]) to label IR constructions. All
Rep-typed values (and computations depending on Rep-typed values) are treated as IR and translated
into generated code, while all other typed values are treated as normal Scala expressions and are
“staged away” from the generated code. Relying on type inference and advanced operator overloading,
LMS also extends to built-in control flow constructs like if, for, and while, so that normal syntax
with subroutines and recursion can be used, in striking contrast to the clunky TensorFlow API. In fact,
the Rep types in LMS code are the only giveaways that any IR construction is taking place. We elide
the mechanisms of code generation in LMS, as they are not a contribution of this paper but covered
in a substantial body of relevant publications (Rompf and Odersky, 2010; Rompf, 2012; Rompf et al.,
2012; Rompf and Odersky, 2012; Kossakowski et al., 2012; Ackermann et al., 2012; Ofenbeck et al.,
2013; Rompf et al., 2013, 2015; Rompf and Amin, 2015; Rompf, 2016a,b; Ofenbeck et al., 2017;
Amin and Rompf, 2018; Stojanov et al., 2018; Tahboub et al., 2018; Essertel et al., 2018).

Although we showcase LMS as the tool of staging, and shift/reset in Scala, it should be noted that
these two concepts are supported in other languages as well: our design is not confined to Scala.
For instance, shift/reset are common fare in certain dynamic languages in the Lisp/Scheme/Racket
tradition, often implemented via stack-copying at runtime (Clinger et al., 1999). It would be very much
feasible to implement shift/reset in Python; the “Stackless Python”1 dialect already provides similar
facilities. Efforts like AutoGraph (Moldovan et al., 2018) provide LMS-like staging mechanisms for
a subset of Python.

1https://github.com/stackless-dev/stackless/wiki
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There are also several choices in how to combine delimited continuations and staging. A program can
be CPS transformed first, then staged to low-level languages. Otherwise, we can choose to stage the
program to a medium-level language first (e.g., Scheme), do CPS transformation, and then compile it
to low-level code (C/CUDA). Various degrees of engineering may be needed depending on the choice
of languages and options, but no fundamental challenges should exist.

We choose to implement CPS-then-staging in Scala, merely out of convenience. With the requisite
implementations in place, we have established an expressive framework capable of supporting
branches, loops, and recursion, similar to the define-by-run style of PyTorch. However, our approach
is actually define-then-run, which maintains a larger surface for analysis and optimization, like
TensorFlow (but with in-graph functions and recursion). Aside from high-level optimizations among
tensor operations that can be added in staging, our approach may benefit from general compiler
optimizations as well, since the program after CPS transformation is no different from normal
programs that are free of AD logic.

4 Evaluation and Case Studies

In this section, we validate our design by implementing and evaluating our prototypic framework,
dubbed Lantern2. Lantern builds on the code in earlier sections, but supports handling tensor objects
(multi-dimension arrays with common linear algebra operations such as element-wise operations
with broadcasting, matrix multiplication, and convolution). The basic classes are shown below, with
Tensor relating to Double, and TensorR relating to NumR in earlier code snippets. Note that for each
Tensor, the data is Rep typed (as IR), but the shape is not (as it is known at staging time). Each TensorR
object contains a value x and a gradient d, and operations on TensorR are implemented with shift
operators providing access to delimited continuations.

class Tensor(val data: Rep[Array[Double]], val shape: Array[Int]) {...}
class TensorR(val x: Tensor, val d: Tensor) {...}

While some operations are linked to the OpenBLAS implementation, most operations are implemented
as simple C++ loops. Even with such a naive backend implementation, Lantern demonstrates potential
for being both expressive and efficient, at least for some small/medium-sized models running on a
single CPU, as shown by comparing with PyTorch, TensorFlow, and DyNet (Neubig et al., 2017). To
be complete, we plan to integrate with standard tensor compiler pipelines (e.g., XLA (TensorFlow
team, 2018; Distributed (Deep) Machine Learning Community, 2018)) or with purpose-built compiler
frameworks that directly extend LMS (e.g., Delite and OptiML (Sujeeth et al., 2014, 2011)) as future
work.

4.1 Evaluation of Four Common Deep Learning Architectures

We selected four representative machine learning architectures for our evaluations: a vanilla Recurrent
Neural Network (RNN), Long Short-Term Memory (LSTM), TreeLSTM, and a Convolutional Neural
Network (CNN). Sample implementations of these in TensorFlow or PyTorch are readily available
online, with either artificial or practical benchmarks. As a new deep learning framework that provides
reverse-mode AD with a tensor API, our evaluation focuses on expressivity and efficiency, rather
than model generalization.3

As shown in Figure 6, we compared Lantern with TensorFlow and PyTorch (DyNet implementation
was only introduced for TreeLSTM for the benefit of autobatching). The training loss (not shown) in
all architectures had similar decay, indicating that Lantern correctly implements backward propagation.
We elected to only gauge the runtime of training loops, as that is the majority of computation. For
vanilla RNN and LSTM, we evaluated at batch size 20. The training time for Lantern in both cases is
less compared with that of PyTorch, and comparable to that of TensorFlow. For CNN, the evaluation
was done at batch size 100, and Lantern performed similarly with PyTorch and TensorFlow (compiled
from source with Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN)
support).

2https://github.com/feiwang3311/Lantern
3All experiments were run using a single CPU on a cluster with Intel Xeon Platinum 8168 CPUs at 2.70GHz

and 0.75 TB RAM per node.
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Figure 6: Comparison of training times for vanilla RNN (top left), LSTM (top right), TreeLSTM
(bottom left), and CNN (bottom right).

We would like to give extra attention to the evaluation of TreeLSTM, which is adapted from Sentiment
Classification using the dataset from the Stanford Sentiment Treebank (Chuang, 2013) following
the work of Tai et al. (2015). Briefly, the model evaluates tree-structured parsed sentences (movie
reviews) for sentiment (range 1 to 5).

hi = TreeLSTM(Embedding(word), hi.left, hi.right)

Here, hi is the hidden vector and the cell state (default when describing LSTM) associated with node
i, and the Embedding is a large lookup table which maps each word to a 300-sized array, reflecting the
semantic distances between all words in the vocabulary. TreeLSTM differs from a simple LSTM by
taking two previous states, from both the left and right children. For leaf nodes, the previous states
are zero, as is the embedding for non-leaf nodes. The hidden vector from each node can be used to
compute a softmax of labels, thus generating a cross-entropy loss by comparing with the true label
for each node. By training, the total loss (or average loss per sentence) should be reduced; thus the
TreeLSTM learns to evaluate reviews in a parse-tree format.

// definition of loss function
def lossFun(root: Rep[Tree]) = {
val init = (init_loss, init_hidden, init_cell)
def f = FUN { node: Rep[Tree] =>
if (node.isEmpty) init else {
val (left, right) = (f(node.left), f(node.right))
LSTM_core(left, right) // return (new_loss, new_hidden, new_cell)

}
}
val (outLoss, _, _) = f(root)
outLoss // only return the loss

}
// gradient update loop
for (n <- (0 until maxIter): Rep[Range]) {
grad(lossFun(next_training_data())) // gradients are updated as side effects
gradient_descent()

}

Figure 7: TreeLSTM implementation in Lantern. FUN emits a differentiable recursive function.

This model is worth examination due to the fact that TreeLSTM is a recursive model (the computation
graph is recursively and dynamically defined by the structure of the training data). In PyTorch4 and

4https://github.com/ttpro1995/TreeLSTMSentiment
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Lantern, this model can be easily expressed as recursive functions (see Lantern implementation in
Figure 7), but Lantern’s implementation is more efficient (Figure 6). However, such dynamic models
are very hard to batch: one cannot simply add another dimension for batching, since each training
datum may require a different computation graph. As such, both Lantern and PyTorch were run at
batch size 1. Both TensorFlow and DyNet have partial solutions to this challenge.

TensorFlow cannot handle a recursive model easily, so the implementation5 used TensorFlow
Fold (Looks et al., 2017), a TensorFlow extension that statically modifies the computation graph
based on the training data. Such a tool is more clunky and ad-hoc to use, but the benefit is that it
allows for effective batching, since a unified static computation graph is constructed based on the
training data. We evaluated TensorFold at batch size 20, and it indeed runs faster than PyTorch, but
not as fast as Lantern.

It is especially interesting to include another framework, DyNet, in this evaluation. DyNet is very
similar to PyTorch, being a define-by-run framework, but offers autobatching (Neubig et al., 2017),
which dynamically batches similar computation nodes at runtime. We observed that DyNet without
autobatching is somewhat slower than Lantern in runtime (labeled DyNetNB), but DyNet with
autobatching has approximately a 40% speedup (labeled DyNetB) and ran approximately 20% faster
than Lantern. However, we still used batch size 1, so that only autobatching within each training
datum is enabled. Our tests show that larger batch sizes actually hurt performance, indicating that
DyNet’s autobatching heuristics may be improved, and that it is worthwhile to explore autobatching
options in Lantern as future work.

5 Related Work and Concluding Remarks

Several works from the PL community address the problem of differentiation. Karczmarczuk (2001)
presented a functional implementation of differentiation using lazy evaluation that can compute
infinite towers of derivatives of higher order. Elliott (2009) developed an implementation of higher-
dimensional, higher-order forward-mode automated differentiation (AD) by calculus on manifolds.
However, in practice forward-mode AD has much higher complexity for machine learning models.
The seminal work by Siskind and Pearlmutter (2008) formalized forward- and reverse-mode AD in a
functional framework. Several practical projects were developed based on their model, including a
flexible differentiable functional programming library called DiffSharp (Baydin et al., 2016), and a
differentiable library for natural language processing in Python called Thinc/spaCy6. Elliott (2018)
provided a generalization of AD based on category theory. However, the model as presented does not
cover in-graph control flow, thus limiting the range of application.

The ML community has also worked to bridge the gap between define-by-run frameworks that are
easy to use and define-then-run frameworks that are efficient to run. Examples include Tangent (van
Merrienboer et al., 2018), which provides AD in Python through the use of source-to- source
transformations, and Myia (Breuleux and van Merriënboer, 2017), which implements a first- order
gradient operator for a subset of Python (using a dedicated functional representation). Another line
of work, AutoGraph (Moldovan et al., 2018), directly stages Python functions into an intermediate
representation and subsequently dispatches to different define-then-run frameworks as back-ends
including TensorFlow and Lantern.

The history of continuations is recounted nicely by Reynolds (1993).

Compared with related work, our contribution stands out by applying two well-understood PL
concepts (delimited continuations and multi-stage programming) to reverse-mode AD, and arriving
at a concise, expressive, and efficient backpropagation framework. The underlying ideas are agnostic
to the choice of programming languages, thus having the potential to benefit the ML community in
broad ways and regardless of implementation language.
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