
DAGs with NO TEARS:
Continuous Optimization for Structure Learning

Xun Zheng1, Bryon Aragam1, Pradeep Ravikumar1, Eric P. Xing1,2

1Carnegie Mellon University 2Petuum Inc.
{xunzheng,naragam,pradeepr,epxing}@cs.cmu.edu

Abstract

Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian
networks) is a challenging problem since the search space of DAGs is combinatorial
and scales superexponentially with the number of nodes. Existing approaches
rely on various local heuristics for enforcing the acyclicity constraint. In this
paper, we introduce a fundamentally different strategy: we formulate the structure
learning problem as a purely continuous optimization problem over real matrices
that avoids this combinatorial constraint entirely. This is achieved by a novel
characterization of acyclicity that is not only smooth but also exact. The resulting
problem can be efficiently solved by standard numerical algorithms, which also
makes implementation effortless. The proposed method outperforms existing
ones, without imposing any structural assumptions on the graph such as bounded
treewidth or in-degree.

1 Introduction

Learning directed acyclic graphs (DAGs) from data is an NP-hard problem [8, 11], owing mainly to
the combinatorial acyclicity constraint that is difficult to enforce efficiently. At the same time, DAGs
are popular models in practice, with applications in biology [33], genetics [49], machine learning
[22], and causal inference [42]. For this reason, the development of new methods for learning DAGs
remains a central challenge in machine learning and statistics.

In this paper, we propose a new approach for score-based learning of DAGs by converting the
traditional combinatorial optimization problem (left) into a continuous program (right):

min

W2Rd⇥d
F (W)

subject to G(W) 2 DAGs

()
min

W2Rd⇥d
F (W)

subject to h(W) = 0,
(1)

where G(W) is the d-node graph induced by the weighted adjacency matrix W , F : Rd⇥d ! R is a
score function (see Section 2.1 for details), and our key technical device h : Rd⇥d ! R is a smooth
function over real matrices, whose level set at zero exactly characterizes acyclic graphs. Although the
two problems are equivalent, the continuous program on the right eliminates the need for specialized
algorithms that are tailored to search over the combinatorial space of DAGs. Instead, we are able
to leverage standard numerical algorithms for constrained problems, which makes implementation
particularly easy, not requiring any knowledge about graphical models. This is similar in spirit to the
situation for undirected graphical models, in which the formulation of a continuous log-det program
[4] sparked a series of remarkable advances in structure learning for undirected graphs (Section 2.2).
Unlike undirected models, which can be reduced to a convex program, however, the program (1) is
nonconvex. Nonetheless, as we will show, even naïve solutions to this program yield state-of-the-art
results for learning DAGs.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

0 5 10 15

0
5

10
15

W

(a) true graph

0 5 10 15

0
5

10
15

fW
ECP

(0)

0 5 10 15

fW
ECP

(0.1)

0 5 10 15

B
FGS

-2

0

+2

(b) estimate with n = 1000

0 5 10 15

0
5

10
15

fW
ECP

(0)

0 5 10 15

fW
ECP

(0.1)

0 5 10 15

B
FGS

-2

0

+2

(c) estimate with n = 20

Figure 1: Visual comparison of the learned weighted adjacency matrix on a 20-node graph with
n = 1000 (large samples) and n = 20 (insufficient samples): fWECP(�) is the proposed NOTEARS
algorithm with `1-regularization �, and BFGS is the binary estimate of the baseline [31]. The proposed
algorithms perform well on large samples, and remains accurate on small n with `1 regularization.

Contributions. The main thrust of this work is to re-formulate score-based learning of DAGs so
that standard smooth optimization schemes such as L-BFGS [28] can be leveraged. To accomplish
this, we make the following specific contributions:

• We explicitly construct a smooth function over Rd⇥d with computable derivatives that
encodes the acyclicity constraint. This allows us to replace the combinatorial constraint
G 2 D in (4) with a smooth equality constraint.

• We develop an equality-constrained program for simultaneously estimating the structure and
parameters of a sparse DAG from possibly high-dimensional data, and show how standard
numerical solvers can be used to find stationary points.

• We demonstrate the effectiveness of the resulting method in empirical evaluations against
existing state-of-the-arts. See Figure 1 for a quick illustration and Section 5 for details.

• We compare our ouput to the exact global minimizer [12], and show that our method attains
scores that are comparable to the globally optimal score in practice, although our methods
are only guaranteed to find stationary points.

Most interestingly, our approach is very simple and can be implemented in about 50 lines of Python
code. As a result of its simplicity and effortlessness in its implementation, we call the resulting method
NOTEARS: Non-combinatorial Optimization via Trace Exponential and Augmented lagRangian for
Structure learning. The implementation is publicly available at https://github.com/xunzheng/
notears.

2 Background

The basic DAG learning problem is formulated as follows: Let X 2 Rn⇥d be a data matrix consisting
of n i.i.d. observations of the random vector X = (X1, . . . , Xd) and let D denote the (discrete) space
of DAGs G = (V,E) on d nodes. Given X, we seek to learn a DAG G 2 D (also called a Bayesian
network) for the joint distribution P(X) [22, 42]. We model X via a structural equation model (SEM)
defined by a weighted adjacency matrix W 2 Rd⇥d. Thus, instead of operating on the discrete space
D, we will operate on Rd⇥d, the continuous space of d⇥ d real matrices.

2.1 Score functions and SEM

Any W 2 Rd⇥d defines a graph on d nodes in the following way: Let A(W) 2 {0, 1}d⇥d be the
binary matrix such that [A(W)]ij = 1 () wij 6= 0 and zero otherwise; then A(W) defines the
adjacency matrix of a directed graph G(W). In a slight abuse of notation, we will thus treat W as
if it were a (weighted) graph. In addition to the graph G(W), W = [w1 | · · · |wd] defines a linear
SEM by Xj = wT

j X + zj , where X = (X1, . . . , Xd) is a random vector and z = (z1, . . . , zd) is a
random noise vector. We do not assume that z is Gaussian. More generally, we can model Xj via a
generalized linear model (GLM) E(Xj |Xpa(Xj)) = f(wT

j X). For example, if Xj 2 {0, 1}, we can
model the conditional distribution of Xj given its parents via logistic regression.

In this paper, we focus on linear SEM and the least-squares (LS) loss `(W ;X) =

1
2nkX�XWk2F ,

although everything in the sequel applies to any smooth loss function ` defined over Rd⇥d. The

2

https://github.com/xunzheng/notears
https://github.com/xunzheng/notears

statistical properties of the LS loss in scoring DAGs have been extensively studied: The minimizer
of the LS loss provably recovers a true DAG with high probability on finite-samples and in high-
dimensions (d� n), and hence is consistent for both Gaussian SEM [3, 45] and non-Gaussian SEM
[24].1 Note also that these results imply that the faithfulness assumption is not required in this set-up.
Given this extensive previous work on statistical issues, our focus in this paper is entirely on the
computational problem of finding an SEM that minimizes the LS loss.

This translation between graphs and SEM is central to our approach. Since we are interested in
learning a sparse DAG, we add `1-regularization kWk1 = k vec(W)k1 resulting in the regularized
score function

F (W) = `(W ;X) + �kWk1 =

1

2n
kX�XWk2F + �kWk1. (2)

Thus we seek to solve

min

W2Rd⇥d
F (W)

subject to G(W) 2 D.
(3)

Unfortunately, although F (W) is continuous, the DAG constraint G(W) 2 D remains a challenge to
enforce. In Section 3, we show how this discrete constraint can be replaced by a smooth equality
constraint.

2.2 Previous work

Traditionally, score-based learning seeks to optimize a discrete score Q : D ! R over the set of
DAGs D; note that this is distinct from our score F (W) whose domain is Rd⇥d instead of D. This
can be written as the following combinatorial optimization problem:

min

G
Q(G)

subject to G 2 D
(4)

Popular score functions include BDe(u) [20], BGe [23], BIC [10], and MDL [6]. Unfortunately, (4)
is NP-hard to solve [8, 11] owing mainly to the nonconvex, combinatorial nature of the optimization
problem. This is the main drawback of existing approaches for solving (4): The acyclicity constraint
is a combinatorial constraint with the number of acyclic structures increasing superexponentially in d
[32]. Notwithstanding, there are algorithms for solving (4) to global optimality for small problems
[12, 13, 29, 39, 40, 47]. There is also a wide literature on approximate algorithms based on order
search [30, 34–36, 43], greedy search [9, 20, 31], and coordinate descent [2, 16, 18]. By searching
over the space of topological orderings, the former order-based methods trade-off the difficult problem
of enforcing acyclicity with a search over d! orderings, whereas the latter methods enforce acyclicity
one edge at a time, explicitly checking for acyclicity violations each time an edge is added. Other
approaches that avoid optimizing (4) directly include constraint-based methods [41, 42], hybrid
methods [17, 44], and Bayesian methods [14, 27, 51].

It is instructive to compare this problem to a similar and well-understood problem: Learning an
undirected graph (Markov network) from data. Score-based methods based on discrete scores similar
to (4) proliferated in the early days for learning undirected graphs [e.g. 22, §20.7]. More recently,
the re-formulation of this problem as a convex program over real, symmetric matrices [4, 48] has
led to extremely efficient algorithms for learning undirected graphs [15, 21, 37]. One of the key
factors in this success was having a closed-form, tractable program for which existing techniques
from the extensive optimization literature could be applied. Unfortunately, the general problem of
DAG learning has not benefitted in this way, arguably due to the intractable form of the program
(4). One of our main goals in the current work is to formulate score-based learning via a similar
closed-form, continuous program. The key device in accomplishing this is a smooth characterization
of acyclicity that will be introduced in the next section.

1Due to nonconvexity, there may be more than one minimizer: These and other technical issues such as
parameter identifiability are addressed in detail in the cited references.

3

3 A new characterization of acyclicity

In order to make (3) amenable to black-box optimization, we propose to replace the combinatorial
acyclicity constraint G(W) 2 D in (3) with a single smooth equality constraint h(W) = 0. Ideally,
we would like a function h : Rd⇥d ! R that satisfies the following desiderata:

(a) h(W) = 0 if and only if W is acyclic (i.e. G(W) 2 D);
(b) The values of h quantify the “DAG-ness” of the graph;
(c) h is smooth;
(d) h and its derivatives are easy to compute.

Property (b) is useful in practice for diagnostics. By “DAG-ness”, we mean some quantification of
how severe violations from acyclicity become as W moves further from D. Although there are many
ways to satisfy (b) by measuring some notion of “distance” to D, typical approaches would violate
(c) and (d). For example, h might be the minimum `2 distance to D or it might be the sum of edge
weights along all cyclic paths of W , however, these are either non-smooth (violating (c)) or hard to
compute (violating (d)). If a function that satisfies desiderata (a)-(d) exists, we can hope to apply
existing machinery for constrained optimization such as Lagrange multipliers. Consequently, the
DAG learning problem becomes equivalent to solving a numerical optimization problem, which is
agnostic about the graph structure.

Our main result establishes the existence of such a function:
Theorem 1. A matrix W 2 Rd⇥d is a DAG if and only if

h(W) = tr

�
eW�W �

� d = 0, (5)

where � is the Hadamard product and eA is the matrix exponential of A. Moreover, h(W) has a
simple gradient

rh(W) =

�
eW�W �T � 2W, (6)

and satisfies all of the desiderata (a)-(d).

We sketch a proof of the first claim here; a formal proof of Theorem 1 can be found in Appendix A.
Let S = W �W , then S 2 Rd⇥d

+ while preserving the sparsity pattern of W . Recall for any positive
integer k, the entries of matrix power (Sk

)ij is the sum of weight products along all k-step paths from
node i to node j. Since S is nonnegative, tr(Sk

) = 0 iff there is no k-cycles in the graph. Expanding
the power series,

tr(eS) = tr(I) + tr(S) +

1

2!

tr(S2
) + · · · � d, (7)

and the equality is attained iff the underlying graph of S, equivalently W , has no cycles.

A key conclusion from Theorem 1 is that h and its gradient only involve evaluating the matrix
exponential, which is a well-studied function in numerical anlaysis, and whose O(d3) algorithm [1]
is readily available in many scientific computing libraries. Although the connection between trace of
matrix power and number of cycles in the graph is well-known [19], to the best of our knowledge,
this characterization of acyclicity has not appeared in the DAG learning literature previously. We
defer the discussion of other possible characterizations in the appendix. In the next section, we apply
Theorem 1 to solve the program (3) to stationarity by treating it as an equality constrained program.

4 Optimization

Theorem 1 establishes a smooth, algebraic characterization of acyclicity that is also computable. As a
consequence, the following equality-constrained program (ECP) is equivalent to (3):

(ECP)

min

W2Rd⇥d
F (W)

subject to h(W) = 0.
(8)

4

Algorithm 1 NOTEARS algorithm

1. Input: Initial guess (W0,↵0), progress rate c 2 (0, 1), tolerance ✏ > 0, threshold ! > 0.
2. For t = 0, 1, 2, . . . :

(a) Solve primal Wt+1 arg minW L⇢
(W,↵t) with ⇢ such that h(Wt+1) < ch(Wt).

(b) Dual ascent ↵t+1 ↵t + ⇢h(Wt+1).
(c) If h(Wt+1) < ✏, set fWECP = Wt+1 and break.

3. Return the thresholded matrix cW :=

fWECP � 1(|fWECP| > !).

The main advantage of (ECP) compared to both (3) and (4) is its amenability to classical techniques
from the mathematical optimization literature. Nonetheless, since {W : h(W) = 0} is a nonconvex
constraint, (8) is a nonconvex program, hence we still inherit the difficulties associated with nonconvex
optimization. In particular, we will be content to find stationary points of (8); in Section 5.3 we
compare our results to the global minimizer and show that the stationary points found by our method
are close to global minima in practice.

In the follows, we outline the algorithm for solving (8). It consists of three steps: (i) converting the
constrained problem into a sequence of unconstrained subproblems, (ii) optimizing the unconstrained
subproblems, and (iii) thresholding. The full algorithm is outlined in Algorithm 1.

4.1 Solving the ECP with augmented Lagrangian

We will use the augmented Lagrangian method [e.g. 25] to solve (ECP), which solves the original
problem augmented by a quadratic penalty:

min

W2Rd⇥d
F (W) +

⇢

2

|h(W)|2

subject to h(W) = 0

(9)

with a penalty parameter ⇢ > 0. A nice property of the augmented Lagrangian method is that it
approximates well the solution of a constrained problem by the solution of unconstrained problems
without increasing the penalty parameter ⇢ to infinity [25]. The algorithm is essentially a dual ascent
method for (9). To begin with, the dual function with Lagrange multiplier ↵ is given by

D(↵) = min

W2Rd⇥d
L⇢

(W,↵), (10)

where L⇢
(W,↵) = F (W) +

⇢

2

|h(W)|2 + ↵h(W) (11)

is the augmented Lagrangian. The goal is to find a local solution to the dual problem

max

↵2R
D(↵). (12)

Let W ?
↵ be the local minimizer of the Lagrangian (10) at ↵, i.e. D(↵) = L⇢

(W ?
↵,↵). Since the dual

objective D(↵) is linear in ↵, the derivative is simply given byrD(↵) = h(W ?
↵). Therefore one can

perform dual gradient ascent to optimize (12):

↵ ↵ + ⇢h(W ?
↵), (13)

where the choice of step size ⇢ comes with the following convergence rate:
Proposition 1 (Corollary 11.2.1, 25). For ⇢ large enough and the starting point ↵0 near the solution
↵?, the update (13) converges to ↵? linearly.

In our experiments, typically fewer than 10 steps of the augmented Lagrangian scheme are required.

4.2 Solving the unconstrained subproblem

The augmented Lagrangian converts a constrained problem (9) into a sequence of unconstrained
problems (10). We now discuss how to solve these subproblems efficiently. Let w = vec(W) 2 Rp,

5

with p = d2. The unconstrained subproblem (10) can be considered as a typical minimization
problem over real vectors:

min

w2Rp
f(w) + �kwk1, (14)

where f(w) = `(W ;X) +

⇢

2

|h(W)|2 + ↵h(W) (15)

is the smooth part of the objective. Our goal is to solve the above problem to high accuracy so that
h(W) can be sufficiently suppressed.

In the special case of � = 0, the nonsmooth term vanishes and the problem simply becomes an
unconstrained smooth minimization, for which a number of efficient numerical algorithms are
available, for instance the L-BFGS [7]. To handle the nonconvexity, a slight modification [28,
Procedure 18.2] needs to be applied.

When � > 0, the problem becomes composite minimization, which can also be efficiently solved by
the proximal quasi-Newton (PQN) method [50]. At each step k, the key idea is to find the descent
direction through a quadratic approximation of the smooth term:

dk = arg min

d2Rp
gT
k d +

1

2

dTBkd + �kwk + dk1, (16)

where gk is the gradient of f(w) and Bk is the L-BFGS approximation of the Hessian. Note that for
each coordinate j, problem (16) has a closed form update d d + z?ej given by

z? = arg min

z

1

2

Bjj|{z}
a

z2 + (gj + (Bd)j| {z }
b

)z + �|wj + dj| {z }
c

+z| = �c + S

✓
c� b

a
,
�

a

◆
. (17)

Moreover, the low-rank structure of Bk enables fast computation for coordinate update. As we
describe in Appendix B, the precomputation time is only O(m2p+m3

) where m⌧ p is the memory
size of L-BFGS, and each coordinate update is O(m). Furthermore, since we are using sparsity
regularization, we can further speed up the algorithm by aggressively shrinking the active set of
coordinates based on their subgradients [50], and exclude the remaining dimensions from being
updated. With the updates restricted to the active set S , all dependencies of the complexity on O(p)
becomes O(|S|), which is substantially smaller. Hence the overall complexity of L-BFGS update is
O(m2|S| + m3

+ m|S|T), where T is the number of inner iterations, typically T = 10.

4.3 Thresholding

In regression problems, it is known that post-processing estimates of coefficients via hard thresholding
provably reduces the number of false discoveries [46, 52]. Motivated by these encouraging results,
we threshold the edge weights as follows: After obtaining a stationary point fWECP of (9), given a
fixed threshold ! > 0, set any weights smaller than ! in absolute value to zero. This strategy also has
the important effect of “rounding” the numerical solution of the augmented Lagrangian (9), since due
to numerical precisions the solution satisfies h(

fWECP) ✏ for some small tolerance ✏ near machine
precision (e.g. ✏ = 10

�8), rather than h(

fWECP) = 0 strictly. However, since h(

fWECP) explicitly
quantifies the “DAG-ness” of fWECP (see desiderata (b), Section 3), a small threshold ! suffices to
rule out cycle-inducing edges.

5 Experiments

We compared our method against greedy equivalent search (GES) [9, 31], the PC algorithm [42], and
LiNGAM [38]. For GES, we used the fast greedy search (FGS) implementation from Ramsey et al.
[31]. Since the accuracy of PC and LiNGAM was significantly lower than either FGS or NOTEARS,
we only report the results against FGS here. This is consistent with previous work on score-based
learning [2], which also indicates that FGS outperforms other techniques such as hill-climbing and
MMHC [44]. FGS was chosen since it is a state-of-the-art algorithm that scales to large problems.

For brevity, we outline the basic set-up of our experiments here; precise details of our experimental
set-up, including all parameter choices and more detailed evaluations, can be found in Appendix E.

6

0 5 10 15

0
5

10
15

W

(a) true graph

0 5 10 15

0
5

10
15

fW
ECP

(0)

0 5 10 15

fW
ECP

(0.1)

0 5 10 15

B
FGS

-2

0

+2

(b) estimate with n = 1000

0 5 10 15

0
5

10
15

fW
ECP

(0)

0 5 10 15

fW
ECP

(0.1)

0 5 10 15

B
FGS

-2

0

+2

(c) estimate with n = 20

Figure 2: Parameter estimates of fWECP on a scale-free graph. Without the additional thresholding
step in Algorithm 1, NOTEARS still produces consistent estimates of the true graph. The proposed
method estimates the weights very well with large samples even without regularization, and remains
accurate on insufficient samples when `1-regularization is introduced. See also Figure 1.

In each experiment, a random graph G was generated from one of two random graph models, Erdös-
Rényi (ER) or scale-free (SF). Given G, we assigned uniformly random edge weights to obtain a
weight matrix W . Given W , we sampled X = WTX + z 2 Rd from three different noise models:
Gaussian (Gauss), Exponential (Exp), and Gumbel (Gumbel). Based on these models, we generated
random datasets X 2 Rn⇥d by generating rows i.i.d. according to one of these three models with
d 2 {10, 20, 50, 100} and n 2 {20, 1000}. Since FGS outputs a CPDAG instead of a DAG or weight
matrix, some care needs to be taken in making comparisons; see Appendix E.1 for details.

5.1 Parameter estimation

We first performed a qualitative study of the solutions obtained by NOTEARS without thresholding
by visualizing the weight matrix fWECP obtained by solving (ECP) (i.e. ! = 0). This is illustrated in
Figures 1 (ER-2) and 2 (SF-4). The key takeaway is that our method provides (empirically) consistent
parameter estimates of the true weight matrix W . The final thresholding step in Algorithm 1 is only
needed to ensure accuracy in structure learning. It also shows how effective is `1-regularization in
small n regime.

5.2 Structure learning

We now examine our method for structure recovery, which is shown in Figure 3. For brevity, we
only report the numbers for the structural Hamming distance (SHD) here, but complete figures and
tables for additional metrics can be found in the supplement. Consistent with previous work on
greedy methods, FGS is very competitive when the number of edges is small (ER-2), but rapidly
deterioriates for even modest numbers of edges (SF-4). In the latter regime, NOTEARS shows
significant improvements. This is consistent across each metric we evaluated, and the difference
grows as the number of nodes d gets larger. Also notice that our algorithm performs uniformly better
for each noise model (Exp, Gauss, and Gumbel), without leveraging any specific knowledge about
the noise type. Again, `1-regularizer helps significantly in the small n setting.

5.3 Comparison to exact global minimizer

In order to assess the ability of our method to solve the original program given by (3), we used the
GOBNILP program [12, 13] to find the exact minimizer of (3). Since this involves enumerating
all possible parent sets for each node, these experiments are limited to small DAGs. Nonetheless,
these small-scale experiments yield valuable insight into how well NOTEARS performs in actually
solving the original problem. In our experiments we generated random graphs with d = 10, and then
generated 10 simulated datasets containing n = 20 samples (for high-dimensions) and n = 1000 (for
low-dimensions). We then compared the scores returned by our method to the exact global minimizer
computed by GOBNILP along with the estimated parameters. The results are shown in Table 1.
Surprisingly, although NOTEARS is only guaranteed to return a local minimizer, in many cases the
obtained solution is very close to the global minimizer, as evidenced by deviations kcW �WGk. Since
the general structure learning problem is NP-hard, we suspect that although the models we have
tested (i.e. ER and SF) appear amenable to fast solution, in the worst-case there are graphs which will
still take exponential time to run or get stuck in a local minimum. Furthermore, the problem becomes

7

●
●

●

●

●● ●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

exp gauss gumbel

ER
2

SF4

25 50 75 100 25 50 75 100 25 50 75 100

0
25
50
75

0

100

200

300

d (Number of nodes)St
ru

ct
ur

al
 H

am
m

in
g

di
st

an
ce

 (S
H

D
)

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

exp gauss gumbel

ER
2

SF4

25 50 75 100 25 50 75 100 25 50 75 100

0.0

0.2

0.4

0.6

0.0

0.2

0.4

d (Number of nodes)

Fa
ls

e
di

sc
ov

er
y

ra
te

 (F
D

R
)

Method ● ● ●FGS NOTEARS NOTEARS−L1

(a) SHD with n = 1000

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

exp gauss gumbel

ER
2

SF4

25 50 75 100 25 50 75 100 25 50 75 100

0
100
200
300
400

0
100
200
300
400
500

d (Number of nodes)St
ru

ct
ur

al
 H

am
m

in
g

di
st

an
ce

 (S
H

D
)

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

exp gauss gumbel

ER
2

SF4

25 50 75 100 25 50 75 100 25 50 75 100

0.3

0.5

0.7

0.9

0.2

0.4

0.6

d (Number of nodes)

Fa
ls

e
di

sc
ov

er
y

ra
te

 (F
D

R
)

Method ● ● ●FGS NOTEARS NOTEARS−L1

(b) SHD with n = 20

Figure 3: Structure recovery in terms of SHD and FDR to the true graph (lower is better). Rows: ran-
dom graph types, {ER,SF}-k = {Erdös-Rényi, scale-free} graphs with kd expected edges. Columns:
noise types of SEM. Error bars represent standard errors over 10 simulations.

Table 1: Comparison of NOTEARS vs. globally optimal solution. �(WG, cW) = F (WG)� F (

cW).

n � Graph F (W) F (WG) F (

cW) F (

fWECP) �(WG, cW) kcW �WGk kW �WGk
20 0 ER2 5.11 3.85 5.36 3.88 -1.52 0.07 3.38
20 0.5 ER2 16.04 12.81 13.49 12.90 -0.68 0.12 3.15

1000 0 ER2 4.99 4.97 5.02 4.95 -0.05 0.02 0.40
1000 0.5 ER2 15.93 13.32 14.03 13.46 -0.71 0.12 2.95

20 0 SF4 4.99 3.77 4.70 3.85 -0.93 0.08 3.31
20 0.5 SF4 23.33 16.19 17.31 16.69 -1.12 0.15 5.08

1000 0 SF4 4.96 4.94 5.05 4.99 -0.11 0.04 0.29
1000 0.5 SF4 23.29 17.56 19.70 18.43 -2.13 0.13 4.34

more difficult as d increases. Nonetheless, this is encouraging evidence that the nonconvexity of (8)
is a minor issue in practice. We leave it to future work to investigate these problems further.

5.4 Real-data

We also compared FGS and NOTEARS on a real dataset provided by Sachs et al. [33]. This dataset
consists of continuous measurements of expression levels of proteins and phospholipids in human
immune system cells (n = 7466 d = 11, 20 edges). This dataset is a common benchmark in graphical
models since it comes with a known consensus network, that is, a gold standard network based on
experimental annotations that is widely accepted by the biological community. In our experiments,
FGS estimated 17 total edges with an SHD of 22, compared to 16 for NOTEARS with an SHD of 22.

8

6 Discussion

We have proposed a new method for learning DAGs from data based on a continuous optimization
program. This represents a significant departure from existing approaches that search over the discrete
space of DAGs, resulting in a difficult optimization program. We also proposed two optimization
schemes for solving the resulting program to stationarity, and illustrated its advantages over existing
methods such as greedy equivalence search. Crucially, by performing global updates (e.g. all
parameters at once) instead of local updates (e.g. one edge at a time) in each iteration, our method
is able to avoid relying on assumptions about the local structure of the graph. To conclude, let us
discuss some of the limitations of our method and possible directions for future work.

First, it is worth emphasizing once more that the equality constrained program (8) is a nonconvex
program. Thus, although we overcome the difficulties of combinatorial optimization, our formulation
still inherits the difficulties associated with nonconvex optimization. In particular, black-box solvers
can at best find stationary points of (8). With the exception of exact methods, however, existing
methods suffer from this drawback as well.2 The main advantage of NOTEARS then is smooth,
global search, as opposed to combinatorial, local search; and furthermore the search is delegated to
standard numerical solvers.

Second, the current work relies on the smoothness of the score function, in order to make use of
gradient-based numerical solvers to guide the graph search. However it is also interesting to consider
non-smooth, even discrete scores such as BDe [20]. Off-the-shelf techniques such as Nesterov’s
smoothing [26] could be useful, however more thorough investigation is left for future work.

Third, since the evaluation of the matrix exponential is O(d3), the computational complexity of our
method is cubic in the number of nodes, although the constant is small for sparse matrices. In fact,
this is one of the key motivations for our use of second-order methods (as opposed to first-order),
i.e. to reduce the number of matrix exponential computations. By using second-order methods,
each iteration make significantly more progress than first-order methods. Furthermore, although in
practice not many iterations (t ⇠ 10) are required, we have not established any worst-case iteration
complexity results. In light of the results in Section 5.3, we expect there are exceptional cases where
convergence is slow. Notwithstanding, NOTEARS already outperforms existing methods when the
in-degree is large, which is known difficult spot for existing methods. We leave it to future work to
study these cases in more depth.

Lastly, in our experiments, we chose a fixed, suboptimal value of ! > 0 for thresholding (Section 4.3).
Clearly, it would be preferable to find a data-driven choice of ! that adapts to different noise-to-signal
ratios and graph types. It is an intersting direction for future to study such choices.

The code is publicly available at https://github.com/xunzheng/notears.

Acknowledgments

We thank the anonymous reviewers for valuable feedback. P.R. acknowledges the support of NSF
via IIS-1149803, IIS-1664720. E.X. and B.A. acknowledge the support of NIH R01GM114311,
P30DA035778. X.Z. acknowledges the support of Dept of Health BD4BH4100070287, NSF
IIS1563887, AFRL/DARPA FA87501720152.

References
[1] Al-Mohy, Awad H., & Higham, Nicholas J. 2009. A New Scaling and Squaring Algorithm for

the Matrix Exponential. SIAM Journal on Matrix Analysis and Applications.

[2] Aragam, Bryon, & Zhou, Qing. 2015. Concave Penalized Estimation of Sparse Gaussian Bayesian
Networks. Journal of Machine Learning Research, 16, 2273–2328.

[3] Aragam, Bryon, Amini, Arash A., & Zhou, Qing. 2016. Learning directed acyclic graphs with
penalized neighbourhood regression. Submitted, arXiv:1511.08963.

2GES [9] is known to find the global minimizer in the limit n ! 1 under certain assumptions, but this is
not guaranteed for finite samples.

9

https://github.com/xunzheng/notears

[4] Banerjee, Onureena, El Ghaoui, Laurent, & d’Aspremont, Alexandre. 2008. Model selection
through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal
of Machine Learning Research, 9, 485–516.

[5] Barabási, Albert-László, & Albert, Réka. 1999. Emergence of scaling in random networks.
Science, 286(5439), 509–512.

[6] Bouckaert, Remco R. 1993. Probabilistic network construction using the minimum description
length principle. In European conference on symbolic and quantitative approaches to reasoning
and uncertainty. Springer, pp. 41–48.

[7] Byrd, Richard H., Lu, Peihuang, Nocedal, Jorge, & Zhu, Ciyou. 1995. A limited memory
algorithm for bound constrained optimization. SIAM Journal on Scientific Computing.

[8] Chickering, David Maxwell. 1996. Learning Bayesian networks is NP-complete. In Learning
from data. Springer.

[9] Chickering, David Maxwell. 2003. Optimal structure identification with greedy search. Journal
of Machine Learning Research, 3, 507–554.

[10] Chickering, David Maxwell, & Heckerman, David. 1997. Efficient approximations for the
marginal likelihood of Bayesian networks with hidden variables. Machine Learning, 29(2-3),
181–212.

[11] Chickering, David Maxwell, Heckerman, David, & Meek, Christopher. 2004. Large-sample
learning of Bayesian networks is NP-hard. Journal of Machine Learning Research, 5, 1287–1330.

[12] Cussens, James. 2012. Bayesian network learning with cutting planes. arXiv preprint
arXiv:1202.3713.

[13] Cussens, James, Haws, David, & Studenỳ, Milan. 2017. Polyhedral aspects of score equivalence
in Bayesian network structure learning. Mathematical Programming, 164(1-2), 285–324.

[14] Ellis, Byron, & Wong, Wing Hung. 2008. Learning causal Bayesian network structures from
experimental data. Journal of the American Statistical Association, 103(482).

[15] Friedman, Jerome, Hastie, Trevor, & Tibshirani, Robert. 2008. Sparse inverse covariance
estimation with the Graphical Lasso. Biostatistics, 9(3), 432–441.

[16] Fu, Fei, & Zhou, Qing. 2013. Learning Sparse Causal Gaussian Networks With Experimen-
tal Intervention: Regularization and Coordinate Descent. Journal of the American Statistical
Association, 108(501), 288–300.

[17] Gámez, José A, Mateo, Juan L, & Puerta, José M. 2011. Learning Bayesian networks by hill
climbing: Efficient methods based on progressive restriction of the neighborhood. Data Mining
and Knowledge Discovery, 22(1-2), 106–148.

[18] Gu, Jiayang, Fu, Fei, & Zhou, Qing. 2018. Penalized Estimation of Directed Acyclic Graphs
From Discrete Data. Statistics and Computing, DOI: 10.1007/s11222-018-9801-y.

[19] Harary, Frank, & Manvel, Bennet. 1971. On the number of cycles in a graph. Matematickỳ
časopis.

[20] Heckerman, David, Geiger, Dan, & Chickering, David M. 1995. Learning Bayesian networks:
The combination of knowledge and statistical data. Machine learning, 20(3), 197–243.

[21] Hsieh, Cho-Jui, Sustik, Mátyás A, Dhillon, Inderjit S, & Ravikumar, Pradeep. 2014. QUIC:
quadratic approximation for sparse inverse covariance estimation. Journal of Machine Learning
Research, 15(1), 2911–2947.

[22] Koller, Daphne, & Friedman, Nir. 2009. Probabilistic graphical models: principles and
techniques. MIT press.

[23] Kuipers, Jack, Moffa, Giusi, & Heckerman, David. 2014. Addendum on the scoring of Gaussian
directed acyclic graphical models. The Annals of Statistics, pp. 1689–1691.

10

[24] Loh, Po-Ling, & Bühlmann, Peter. 2014. High-Dimensional Learning of Linear Causal Net-
works via Inverse Covariance Estimation. Journal of Machine Learning Research, 15, 3065–3105.

[25] Nemirovski, Arkadi. 1999. Optimization II: Standard Numerical Methods for Nonlinear
Continuous Optimization.

[26] Nesterov, Yurii. 2005. Smooth minimization of non-smooth functions. Mathematical Program-
ming.

[27] Niinimäki, Teppo, Parviainen, Pekka, & Koivisto, Mikko. 2016. Structure discovery in Bayesian
networks by sampling partial orders. Journal of Machine Learning Research, 17(1), 2002–2048.

[28] Nocedal, Jorge, & Wright, Stephen J. 2006. Numerical Optimization.

[29] Ott, Sascha, & Miyano, Satoru. 2003. Finding optimal gene networks using biological con-
straints. Genome Informatics, 14, 124–133.

[30] Park, Young Woong, & Klabjan, Diego. 2017. Bayesian Network Learning via Topological
Order. Journal of Machine Learning Research.

[31] Ramsey, Joseph, Glymour, Madelyn, Sanchez-Romero, Ruben, & Glymour, Clark. 2016. A
million variables and more: the Fast Greedy Equivalence Search algorithm for learning high-
dimensional graphical causal models, with an application to functional magnetic resonance images.
International Journal of Data Science and Analytics, pp. 1–9.

[32] Robinson, Robert W. 1977. Counting unlabeled acyclic digraphs. In Combinatorial mathematics
V. Springer.

[33] Sachs, Karen, Perez, Omar, Pe’er, Dana, Lauffenburger, Douglas A, & Nolan, Garry P.
2005. Causal protein-signaling networks derived from multiparameter single-cell data. Sci-
ence, 308(5721), 523–529.

[34] Scanagatta, Mauro, de Campos, Cassio P, Corani, Giorgio, & Zaffalon, Marco. 2015. Learning
Bayesian networks with thousands of variables. In Advances in Neural Information Processing
Systems. pp. 1864–1872.

[35] Scanagatta, Mauro, Corani, Giorgio, de Campos, Cassio P, & Zaffalon, Marco. 2016. Learning
Treewidth-Bounded Bayesian Networks with Thousands of Variables. In Advances in Neural
Information Processing Systems. pp. 1462–1470.

[36] Schmidt, Mark, Niculescu-Mizil, Alexandru, & Murphy, Kevin. 2007. Learning graphical
model structure using L1-regularization paths. In AAAI, vol. 7. pp. 1278–1283.

[37] Schmidt, Mark, Berg, Ewout, Friedlander, Michael, & Murphy, Kevin. 2009. Optimizing
costly functions with simple constraints: A limited-memory projected quasi-newton algorithm. In
Artificial Intelligence and Statistics. pp. 456–463.

[38] Shimizu, Shohei, Hoyer, Patrik O, Hyvärinen, Aapo, & Kerminen, Antti. 2006. A linear
non-Gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7,
2003–2030.

[39] Silander, Tomi, & Myllymaki, Petri. 2006. A simple approach for finding the globally optimal
Bayesian network structure. In Proceedings of the 22nd Conference on Uncertainty in Artificial
Intelligence.

[40] Singh, Ajit P, & Moore, Andrew W. 2005. Finding optimal Bayesian networks by dynamic
programming.

[41] Spirtes, Peter, & Glymour, Clark. 1991. An algorithm for fast recovery of sparse causal graphs.
Social Science Computer Review, 9(1), 62–72.

[42] Spirtes, Peter, Glymour, Clark, & Scheines, Richard. 2000. Causation, prediction, and search.
Vol. 81. The MIT Press.

11

[43] Teyssier, Marc, & Koller, Daphne. 2005. Ordering-based search: A simple and effective
algorithm for learning Bayesian networks. In Uncertainty in Artifical Intelligence (UAI).

[44] Tsamardinos, Ioannis, Brown, Laura E, & Aliferis, Constantin F. 2006. The max-min hill-
climbing Bayesian network structure learning algorithm. Machine Learning, 65(1), 31–78.

[45] van de Geer, Sara, & Bühlmann, Peter. 2013. `0-penalized maximum likelihood for sparse
directed acyclic graphs. Annals of Statistics, 41(2), 536–567.

[46] Wang, Xiangyu, Dunson, David, & Leng, Chenlei. 2016. No penalty no tears: Least squares in
high-dimensional linear models. In International Conference on Machine Learning. pp. 1814–
1822.

[47] Xiang, Jing, & Kim, Seyoung. 2013. A* Lasso for Learning a Sparse Bayesian Network
Structure for Continuous Variables. In Advances in Neural Information Processing Systems.
pp. 2418–2426.

[48] Yuan, Ming, & Lin, Yi. 2007. Model selection and estimation in the Gaussian graphical model.
Biometrika, 94(1), 19–35.

[49] Zhang, Bin, Gaiteri, Chris, Bodea, Liviu-Gabriel, Wang, Zhi, McElwee, Joshua, Podtelezhnikov,
Alexei A, Zhang, Chunsheng, Xie, Tao, Tran, Linh, Dobrin, Radu, et al. 2013. Integrated systems
approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell, 153(3),
707–720.

[50] Zhong, Kai, Yen, Ian En-Hsu, Dhillon, Inderjit S, & Ravikumar, Pradeep K. 2014. Proximal
quasi-Newton for computationally intensive l1-regularized m-estimators. In Advances in Neural
Information Processing Systems. pp. 2375–2383.

[51] Zhou, Qing. 2011. Multi-Domain Sampling With Applications to Structural Inference of
Bayesian Networks. Journal of the American Statistical Association, 106(496), 1317–1330.

[52] Zhou, Shuheng. 2009. Thresholding procedures for high dimensional variable selection and
statistical estimation. In Advances in Neural Information Processing Systems. pp. 2304–2312.

12

