NIPS Proceedingsβ

The emergence of multiple retinal cell types through efficient coding of natural movies

Part of: Advances in Neural Information Processing Systems 31 (NIPS 2018) pre-proceedings

[PDF] [BibTeX] [Supplemental]

Authors

Conference Event Type: Poster

Abstract

One of the most striking aspects of early visual processing in the retina is the immediate parcellation of visual information into multiple parallel pathways, formed by different retinal ganglion cell types each tiling the entire visual field. Existing theories of efficient coding have been unable to account for the functional advantages of such cell-type diversity in encoding natural scenes. Here we go beyond previous theories to analyze how a simple linear retinal encoding model with different convolutional cell types efficiently encodes naturalistic spatiotemporal movies given a fixed firing rate budget. We find that optimizing the receptive fields and cell densities of two cell types makes them match the properties of the two main cell types in the primate retina, midget and parasol cells, in terms of spatial and temporal sensitivity, cell spacing, and their relative ratio. Moreover, our theory gives a precise account of how the ratio of midget to parasol cells decreases with retinal eccentricity. Also, we train a nonlinear encoding model with a rectifying nonlinearity to efficiently encode naturalistic movies, and again find emergent receptive fields resembling those of midget and parasol cells that are now further subdivided into ON and OFF types. Thus our work provides a theoretical justification, based on the efficient coding of natural movies, for the existence of the four most dominant cell types in the primate retina that together comprise 70% of all ganglion cells.