NIPS Proceedingsβ

Group Equivariant Capsule Networks

Part of: Advances in Neural Information Processing Systems 31 (NIPS 2018) pre-proceedings

[PDF] [BibTeX] [Supplemental]


Conference Event Type: Poster


We present group equivariant capsule networks, a framework to introduce guaranteed equivariance and invariance properties to the capsule network idea. Our work can be divided into two contributions. First, we present a generic routing by agreement algorithm defined on elements of a group and prove that equivariance of output pose vectors, as well as invariance of output activations, hold under certain conditions. Second, we connect the resulting equivariant capsule networks with work from the field of group convolutional networks. Through this connection, we provide intuitions of how both methods relate and are able to combine the strengths of both approaches in one deep neural network architecture. The resulting framework allows sparse evaluation of the group convolution operator, provides control over specific equivariance and invariance properties, and can use routing by agreement instead of pooling operations. In addition, it is able to provide interpretable and equivariant representation vectors as output capsules, which disentangle evidence of object existence from its pose.