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Abstract

In many real-world learning tasks, it is hard to directly optimize the true perfor-
mance measures, meanwhile choosing the right surrogate objectives is also diffi-
cult. Under this situation, it is desirable to incorporate an optimization of objec-
tive process into the learning loop based on weak modeling of the relationship
between the true measure and the objective. In this work, we discuss the task of
objective adaptation, in which the learner iteratively adapts the learning objective
to the underlying true objective based on the preference feedback from an oracle.
We show that when the objective can be linearly parameterized, this preference
based learning problem can be solved by utilizing the dueling bandit model. A
novel sampling based algorithm DL2M is proposed to learn the optimal parameter,
which enjoys strong theoretical guarantees and efficient empirical performance.
To avoid learning a hypothesis from scratch after each objective function update,
a boosting based hypothesis adaptation approach is proposed to efficiently adapt
any pre-learned element hypotheses to the current objective. We apply the overall
approach to multi-label learning, and show that the proposed approach achieves
significant performance under various multi-label performance measures.

1 Introduction

Machine learning approaches have already been applied on many real-world tasks, in which the tar-
get is usually to optimize some task-specific performance measures. For complex problems, the per-
formance measures are usually hard to be optimized directly, such as the click-through-rate in online
advertisement and the profit gain in recommendation system design. Instead of directly optimizing
these complex measures, surrogate objectives with better mathematical properties are designed to
simplify optimization. It is obvious that whether the objective is correctly designed essentially af-
fects the application performance. However, it also requires delicate knowledge on the relationship
between the true measure and the objective, which is sometimes difficult and challenging to acquire.
Under this situation, it is more desirable to learn both objective and hypothesis simultaneously.

Based on this motivation, we consider the novel scenario of learning with objective adaptation from
preference feedback. Under this scenario, in each iteration of the objective adaptation process, the
learner maintains a pair of objective functions, as well as the corresponding learned hypotheses,
obtained from the latest two iterations. An oracle then provides a preference over the pair of hy-
potheses to the learner, according to the true task performance measure. Based on this preference
information, the learner updates both the objective function and the corresponding hypothesis. In
special, this formulation even allows us to model complex scenerios when the true performance mea-
sure is not quantified, such as subjective human preference. It is expected that the objective function
converges to the optimal one so that the learned hypothesis optimizes the true performance measure.
In this work, we focus on the following linear parameterized objective function class. Denote the
objective by Lw,w ∈ W , in which W is the parameter space, and w = [w1 w2 · · · wK ] is a K
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dimensional real-valued vector. We assume that Lw can be represented as

Lw =

K∑
i=1

wili + w0Λ, w0 ∈ {0, 1}, (1)

in which l1, l2, . . . , lK are K convex element objectives, and w0 is an additional indicator of Λ.
When w0 = 0, Lw is a linear combination of the K element objectives. When w0 = 1, Λ can be
utilized to represent an additional convex regularization term. It is easy to see that this linear for-
mulation covers a broad class of commonly used objectives in different learning tasks. By choosing
different w, we are allowed to consider different trade-offs among element objectives. The target of
objective adaptation is then to learn the optimal w∗ which corresponds to the best trade-off leading
to the optimal task performance measure. To ensure the problem of learning a hypothesis under any
choice of w is solvable, we restrict ∀wi ≥ 0. When w0 = 0, the scale of w does not matter, thus we
restrictW to be the non-negative part of the K-dimensional unit sphere, i.e. ∥w∥2 = 1,∀wi ≥ 0.
When w0 = 1, i.e. the scale of w is meaningful, we restrict W to be the K-dimensional ball
∥w − R1K∥2 ≤ R, in which 1K is the K-dimensional full-one vector and R is the radius. By this
way, Lw is kept convex over all w ∈ W .

There are two main challenges under the above objective adaptation scenario. One is to learn the
objective function based on preference feedback from the oracle, which requires proper modeling
of the preference feedback. Another is how hypothesis learning can be done efficiently without
learning from scratch when the objective is updated. In this work, we take the first step towards
the above two challenges. First, we naturally formulate the objective adaptation process into the
dueling bandit model [Yue et al., 2012], in which w is treated as the bandit arm and the oracle
preference is treated as the reward. A novel sampling based algorithm DL2M , which stands for
Dueling bandit Learning for Logit Model, is proposed for learning the optimal weight w∗, which
enjoys Õ(K3/2

√
T ) regret bound and efficient empirical performance. Second, by assuming to

learn K element hypotheses f i beforehand, which correspond to one-hot weights wi, i ∈ [K] with
only one non-zero wi, a novel gradient boosting based approach named Adapt-Boost is proposed
for adapting the element hypotheses to the hypothesis hw corresponding to any w. We apply the
proposed objective adaptation approach to multi-label learning, and the experimental results show
that our approach achieves significant performance for various multi-label performance measures.

2 Related Work

Some similarities exist between the objective adaptation scenerio and multi-objective optimization
(MOO) [Deb, 2014]. Under both scenerios, multiple element objectives are considered, and the
trade-offs among them should be properly dealt with. While in MOO, the target is to figure out
the Pareto solutions reflecting different trade-offs instead of a single optimal solution defined by the
oracle’s preference. In fact, for our objective adaptation problem, it is also possible to utilize evolu-
tionary algorithms instead of the proposed DL2M algorithm. While evolutionary algorithms are usu-
ally heuristic and theoretical guarantees are lacking. In [Agarwal et al., 2014], the multi-objective
decision making problem is considered. The target of the learner is to optimize all objectives by
observing the actions provided by a mentor. There is a significant difference between their setting
and ours since we focus on general learning tasks instead of decision making.

The proposed DL2M algorithm belongs to the family of continuous dueling bandit algorithms. In
[Yue and Joachims, 2009], an online bandit gradient descent algorithm [Flaxman et al., 2005] was
proposed, which achieves O(

√
KT 3/4) regret bound for convex value functions. In [Kumagai,

2017], they showed that when the value function is strongly convex and smooth, their stochastic
mirror descent algorithm achieves near optimal Õ(K

√
T ) regret bound. Similar to DL2M , both

the above two algorithms follow from the online convex optimization framework [Zinkevich, 2003],
while DL2M assumes the underlying value function follows from a linear model. The major advan-
tage of DL2M lies on the reduction of the total number of arms needed to be sampled during learning.
For the above two algorithms, two arms are needed to be sampled for comparison in one iteration.
While DL2M samples only one arm in one iteration t, and compares it with the arm sampled on t−1.
Thus the total number of arms needed is halved for DL2M , comparing to the above two algorithms.
For objective adaptation, choosing an arm incurs the cost of learning the corresponding hypothesis,
thus it is important to reduce the total number of arms sampled.
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Our boosting based hypothesis adaptation procedure is motivated from multi-task learning [Evge-
niou and Pontil, 2004; Chapelle et al., 2010]. By regarding each element objective as a single task,
the hypothesis adaptation procedure can be decomposed into the adaptation of the element hypoth-
esis for each element objective, and the adaptation of a global hypothesis for the weighted total
objective. On the other hand, since the target is to optimize the single total objective, directly uti-
lizing multi-task learning approaches is invalid to our problem. The hypothesis adaptation task is
also considered in [Li et al., 2013], in which an efficient adaptation approach is proposed under
the assumption that the auxiliary hypothesis is a linear model. On the other hand, the linear model
assumption also restricts the capacity of adaptation. To address this issue, our approach utilizes a
gradient boosting based learner, which can use any weak hypothesis for adaptation, thus the opti-
mization procedure can be more flexible and efficient.

3 Dueling Bandit Learning for Objective Adaptation

In this section, a dueling bandit algorithm DL2M is proposed to learn the optimal weight vector w∗
from preference feedback to solve the objective adaptation task. For convenience of optimization,
we assume the arm space for DL2M is the full K-dimensional unit sphereW : ∥w∥2 = 1. How to
apply DL2M onW defined in Section 1 is discussed in Remark 3 below. To model the preference of
the oracle, we assume a total order ⪯ exists on W . For w∗ ∈ W , we have w ⪯ w∗,∀w ∈ W .
Whenever the oracle is given an ordered pair (w,w′), the oracle gives the feedback of r = 1
if w′ ⪯ w, and r = −1 otherwise. To precisely model the partial order and how the oracle
provides the preference information, we assume that each arm can be evaluated by a value function
v(w), such that v(w′) ≤ v(w) ⇔ w′ ⪯ w, and the preference feedback is generated by the
probabilistic model considering the gap between v(w) and v(w′): Pr(r = 1) = µ(v(w)− v(w′)),
in which µ(x) is a strictly increasing link function. In this paper, the logistic probability model
µ(x) = 1/(1 + exp(−x)) is utilized, which is the common choice in related researches. The
generation of preferences is also assumed to be independent of other parts of learning. In each
iteration t out of the total T iterations, a pair (wt,w

′
t) is submitted to the oracle for feedback. The

target is to minimize the total (pseudo) regret

∆T =

T∑
t=1

µ(v(w∗)− v(wt)) + µ(v(w∗)− v(w′
t)).

If further restricts w′
t to be wt−1, then we can only consider the summation over wt. Furthermore,

by observing that µ(v(w∗)−v(wt)) achieves minimum 1/2 when wt = w∗, we can reformulate the
regret as ∆T =

∑T
t=1 µ(v(w∗)− v(wt))− µ(v(w∗)− v(w∗)) =

∑T
t=1 µ(v(w∗)− v(wt))− 1/2.

From the above definition, the tasks of regret minimization and optimal weight vector estimation
coincide. By L’Hopital’s rule, f(x) = 1/(1+e−x)−1/2 has the same convergence rate as f(x) = x

when x → 0. Thus we can only consider ∆T =
∑T

t=1 v(w∗) − v(wt). In this work, we adopt the
commonly used linear value function vLIN(w) = wT θ∗, in which θ∗ is an underlying optimal
evaluation vector. This leads to the classical linear regret formulation

∆LIN
T =

T∑
t=1

wT
∗ θ∗ −wT

t θ∗, (2)

which indicates that the objective is to maximize the linear value function. Since ∥w∥2 = 1, wT θ∗
is the projection of θ∗ onto w, and achieves the maximum when the directions of w and θ∗ coincide.
Thus the direction of θ∗ can be interpreted as the direction of the optimal weight vector kept in the
oracle’s mind. To simplify optimization, we assume ∥θ∗∥2 ≤ 1 without loss of generality.

From the definition of regret, it is crucial to estimate θ∗ accurately. Thus we consider the procedure
of estimating θ∗ in each iteration first. Motivated by the logit one-bit bandit algorithm proposed in
[Zhang et al., 2016], in each iteration t, we can utilize the online version of the maximum likelihood
estimator, i.e. to minimize the loss function

ft(θ) = log
(
1 + exp

(
− rt(w

T
t θ −wT

t−1θ)
))

,
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Algorithm 1 Dueling bandit Learning for Logit Model (DL2M )

1: Input Initialization θ1 = 0, Z1 = λI,w0, number of iterations T .
2: for t = 1 to T do
3: Sample ηt ∼ N (0, IK).
4: Choose κt according to Theorem 1.
5: Compute θ̃t as

θ̃t ← θt + κtZ
−1/2
t ηt. (5)

6: Compute wt as
wt ← arg max

∥w∥2=1
wT θ̃t. (6)

7: Submit wt and wt−1 and get rt.
8: Compute θt+1 and Zt+1 as Equation 3 and 4.
9: end for

which satisfies the exponentially concave property. As a result, the optimal update can be approxi-
mated by the analogy of the online Newton step [Hazan et al., 2007]:

θt+1 = min
∥θ∥2≤1

∥θ − θt∥2Zt+1

2
+ (θ − θt)

T∇ft(θt), (3)

in which
Zt+1 = Zt +

β

2
(wt −wt−1)(wt −wt−1)

T , Z1 = λI, (4)

and β = 1
2(e+1) . Next, we consider how to choose wt in each round for better exploration. Different

from the UCB based exploration strategy implemented in [Zhang et al., 2016], we extend the linear
Thompson sampling technique proposed in [Abeille and Lazaric, 2017] to our dueling bandit setting,
leading to the DL2M algorithm, which is illustrated in Algorithm 1. We provide regret guarantee for
the proposed algorithm, whose proof will be presented in a longer version of the paper.

Theorem 1. Assume that κt in Algorithm 1 is set according to κt =
√

γt(
δ
4T ), where

γt+1(δ) = λ+ 16 + (
8

β
+

32

3
) log

(2⌈2 log t⌉t2
δ

)
+

2

β
log

det(Zt+1)

det(Z1)
. (7)

After running DL2M for T rounds, then for ∀δ > 0, the following result holds with probability at
least 1− δ:

T∑
t=1

wT
∗ θ∗ −wT

t θ∗ ≤
√

γT (
δ

4T
)KT log

8KT

δ

(
391

√
1

β
log

det(Zt+1)

det(Z1)
+ 128

√
1

λ
log

4

δ

)
.

By Lemma 10 of [Abbasi-Yadkori et al., 2011], we have log(det(Zt+1)/ det(Z1)) ≤
K log

(
1 + βt

2λK

)
. Thus Theorem 1 provides Õ(K3/2

√
T ) regret guarantee for DL2M .

Remark 1 The well-known doubling trick [Shalev-Shwartz, 2012] can be utilized to make κt in-
dependent of the total number of iterations T . In practice, since κt determines the step size
of exploration, it is desirable to further make it fine-tunable. In all the experiments, we set
κt = min(c/2, c

√
log(det(Zt)/ det(Z1))), in which c is a hyperparameter. The min operator is

introduced to control the largest step size.

Remark 2 Theorem 1 provides the guarantee of total regret. Our objective adaptation approach can
be utilized in many real-world tasks, in which the learned is already in application during the learning
stage, and the preference feedback is generated from its true effectiveness. The total regret guarantee
is natural under this situation. Meanwhile, it is also important to consider another kind of tasks, in
which only the final estimation accuracy matters. Under this situation, it is better to consider simple
regret instead of total regret since it is a pure exploration problem. This is a particularly interesting
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and challenging task since we assume the continuous arm space. The experimental results in Section
5 show that DL2M is efficient in finding the best arms, and we leave designing the optimal pure
exploration algorithm for continuous dueling bandits a future work to investigate.

Remark 3 In the above discussion, we assume that the arm space for DL2M is W0 : ∥w∥2 = 1.
For objective learning, the parameter domains introduced in Section 1 are different. We discuss how
DL2M can be applied.

When w0 = 0, the domain of w isW : ∥w∥2 = 1,∀wi ≥ 0, which is the nonnegative part ofW0.
To apply DL2M , it is necessary to restrict each dimension of θt, θ̃t to be nonnegative. For θt, we
can simply change the domain of the update of θ as

θt+1 = min
∥θ∥2≤1,∀θi≥0,i∈[K]

∥θ − θt∥2Zt+1

2
+ (θ − θt)

T∇ft(θt),

in which θi is the i-th entry of θ. Since the domain remains convex, the efficiency of optimization
is unaffected. For θ̃t+1, we can simply take a θ̃it+1 ← max(0, θ̃it+1),∀i ∈ [K] operation to limit
its value. Though this operation may affect the theoretical guarantee for w near the boundary, we
observe that the performance is not affected in experiments.

When w0 = 1, the domain of w is W : ∥w − R1K∥2 ≤ R. The main idea is to establish a
topologically identical mapping from the arm space to W , then we can perform DL2M in the arm
space, then map the result to W . First, it is easy to establish a bijective mapping g1 from the
K dimensional ball W1 : ∥w∥2 ≤ 1 to W with constant shifting and scaling. Second, another
simple bijective mapping g2 exists to map a point in half of the K + 1-dimensional sphere, i.e.
W2 : ∥w∥2 = 1, wK+1 ≥ 0, to a point in W1, by simply setting wK+1 = 0 (just imagine the
mapping from the upper half of the three-dimensionl sphere onto a two-dimensional circle). Thus
we can simply utilize the composite mapping g1(g2) to map an arm inW2 to a parameter inW . To
apply DL2M onW2, we can update θ by

θt+1 = min
∥θ∥2≤1,θK+1≥0

∥θ − θt∥2Zt+1

2
+ (θ − θt)

T∇ft(θt),

and perform θ̃K+1
t+1 ← max(0, θ̃K+1

t+1 ) to restrict both θt+1, θ̃t+1, which is similar to w0 = 0.

4 Boosting Based Hypothesis Adaptation

After each objective adaptation step, w is updated, then a new Lw is obtained. To avoid learning
the corresponding hypothesis Fw from scratch, a hypothesis adaptation procedure is considered.
Recall the formulation of objective function defined in Equation 1. Assume that before the whole
objective adaptation process, we have learned K element hypotheses f i under (regularized) element
objectives li + w0Λ, i ∈ [K]. To obtain Fw corresponding to Lw, we can linearly combine f i

together with a newly learned auxiliary hypothesis ϕw, i.e. make Fw =
∑K

i=1 α
if i + ϕw. As a

result, the learning problem is transformed into

min
αi,i∈[K],ϕw

Lw
(( K∑

i=1

αif i
)
+ ϕw

)
. (8)

Under the above formulation, the learning target is to decide the weight αi for each f i, together
with the auxiliary hypothesis ϕw. Intuitively, there should be a close relationship between αi and
wi, which is the weight for li in Lw. When wi is large, the corresponding li has a large impact to the
global Lw. Since f i is learned under li+w0Λ, then αi should also be large to make the contribution
of f i in Fw more significant. For the similar reason, if wi is small then αi should follow. As a result,
to solve Equation 8 properly, establishing a close relationship between αi and wi is a necessary task.

Based on this motivation, a boosting based hypothesis adaptation approach named Adapt-Boost is
proposed. Assume that the learning procedure runs for N iterations. Under Adapt-Boost, one weak
hypothesis hj is learned in each iteration j. Denote by H = [h1 h2 · · · hN ]T the vector of all
learned weak hypotheses and set w′,0 = 1, w′,i = wi, i ∈ [K], Adapt-Boost solves the following
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Algorithm 2 Adapt-Boost

1: Input: Loss parameter w, loss function Lw, element hypotheses f i, i ∈ [K], f0 ≡ 0, number
of iterations N , number of element losses K, step size ϵ.

2: w′,i ← wi, i ∈ [K], w′,0 ← 1, F0 ← f0.
3: for j = 1 to N do
4: Calculate current residual −∇Lw(Fj−1).
5: for i = 0 to K do
6: Fit residual −∇Lw(Fj−1) with f i + hi

j to obtain a weak hypothesis hi
j .

7: end for
8: Choose the optimal update i∗ as

i∗ = argmaxi−w′,i[∇Lw(Fj−1)](f
i + hi

j).

9: Update the current hypothesis as

Fj = Fj−1 + (w′,i∗ϵ)(f i∗ + hi∗

j ).

10: end for
11: Output The learned hypothesis FN .

l1-regularized problem:

min
βi,i∈[K]∪{0},H

Lw
(( K∑

k=1

βk,T (1Nfk +H)
)
+ β0,TH

)
, s.t.

K∑
i=0

1

w′,i ∥β
i∥1 ≤ µ, (9)

in which βi, i ∈ [K]∪{0} are N -dimensional weight vectors and 1N is the N -dimensional full-one
vector. Comparing to Equation 8, Fw is further restricted as

(∑K
k=1 β

k,T (1Nfk +H)
)
+ β0,TH ,

and the auxiliary hypothesis ϕw is decomposed into K local βk,TH corresponding to fk, together
with a global β0,TH . For each fk, the weight αk, which represents the importance of fk in learning
Fw, is substituted by the weight vector βk. Thus controlling the magnitude of αk is equivalent to
controlling the norm of βk. This target is realized by introducing the sum of 1/w′,i-weighted l1-
norm constraints on βi, i ∈ [K] ∪ {0} in Equation 9 with a hyperparameter µ controlling the global
sparsity. Meanwhile, by controlling the local sparsity of each βk using w′,k, k ∈ [K], we are able to
relate the importance of fk in Fw with objective weights w.

The key advantage to employ Equation 9 is that this sparsity-constrained problem can be solved by
the ϵ-boost algorithm [Rosset et al., 2004], which will be briefly introduced below. To simplify nota-
tion, we use β to denote the vector which is the concatenation of all βi, i ∈ [K]∪ {0}. Temporarily,
we also assume that the weak hypotheses H are fixed, and only β needs to be optimized. Instead of
explicitly setting the sparsity level µ, we decompose the sparsity constraint over all steps. In each
iteration, a small increment ∆β is added on β, and an ϵ-sparsity constraint is applied on ∆β, leading
to the following inside-iteration optimization problem:

min
∆β

Lw(β +∆β), s.t.

K∑
i=0

1

w′,i ∥∆βi∥1 ≤ ϵ, (10)

in which ∆βi is the part of ∆β added on βi. The objective function can be approximated as

Lw(β +∆β) ≈ Lw(β) + [∇Lw(β)]T∆β (11)

by Taylor expansion. Thus we turn to minimize [∇Lw(β)]T∆β. Since the sparsity constraints are
gradually added by ϵ over the learning process, and Lw is convex, the optimal solution for Equation
10 always satisfies

∑K
i=0

1
w′,i ∥∆βi∥1 = ϵ. Let [∇Lw(β)]ij , [∆β]ij , i ∈ [K] ∪ {0}, j ∈ [N ] be the

(Ni + j)-th dimension of ∇Lw(β) and ∆β. It is easy to see that the optimal ∆β in Equation 11
is a vector of all zeros except for [∆β]i

∗

j∗ = w′,i∗ϵ such that i∗, j∗ = argmini,j w
′,i[∇Lw(β)]ij .

Furthermore, we can explicity write the (Ni + j)-th component of ∇Lw(β) as ∂Lw/∂βi
j =

[∇Lw(Fw)](∂Fw/∂βi
j) = [∇Lw(Fw)](f i + hj), in which hj is the j-th weak hypothesis in
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H , and an additional f0 ≡ 0 is introduced to simplify notation. Now let us take choosing weak hy-
potheses H into consideration. Based on the above discussion, in the j-th iteration, our target is to
solve maxi,hj −w′,i[∇Lw(Fw)](f i +hj). This formulation inspires us to utilize gradient boosting.
To obtain the optimal update, a candidate weak hypothesis hi

j is chosen for each i, i ∈ [K] ∪ {0} to
let f i + hi

j fit for the residual −∇Lw(Fw), and then we can choose the optimal update f i∗ + hi∗

j

which optimally fits the residual weighted by w′,i. The optimal step size for the update is w′,i∗ϵ
according to the previous discussion. The whole process of Adapt-Boost is illustrated in Algorithm
2. It can be seen that Adapt-Boost utilizes a boosting based process to gradually add the element
and weak hypotheses into the learned hypothesis instead of explicitly setting their weights. Thanks
to the flexability of choosing the weak learners and the efficiency of gradient boosting, we are able
to solve complex hypothesis adaptation problems with low cost.
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(a) K = 10, c = 0.1
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(b) K = 10, c = 0.05

500 1000 1500 2000 2500 3000

t

0

0.2

0.4

0.6

0.8

1

In
s
ta

n
ta

n
e

o
u
s
 R

e
g

re
t

(c) K = 10, c = 0.01
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(d) K = 100, c = 0.1
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(f) K = 100, c = 0.01

Figure 1: Instantaneous regret of DL2M .
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5 Experiments

5.1 Testing DL2M on Synthetic Data

We present experimental results on synthetic data to verify the effectiveness of DL2M . In each
experiment, a K dimensional point is uniformly sampled from the unit ball as θ∗. Once the learner
submits the pair of arms (wt,wt−1), a preference feedback rt ∈ {−1, 1} is randomly generated
according to Pr(rt = ±1|(wt,wt−1)) = 1/(1 + exp

(
− ρrt(wt −wt−1)

T θ∗
)
), in which ρ is the

parameter controlling the randomness of the preferences. In all experiments, we use ρ = 100 to
ensure the preferences are relatively consistent. We also set λ = 1 in all the experiments. The per-
formance is measured by the change of instantaneous regret wT

∗ θ∗ −wT
t θ∗ over time. We compare

the results among different c and K, which are illustrated in Figure 1. It can be observed that when
the parameter c is properly set and K is not large, DL2M achieves very efficient performance, which
can quickly converge in limited number of iterations. As the dimension gets larger, the performance
degenerates accordingly. To verify the efficiency of Thompson sampling in dueling and one-bit
bandit problems, it is interesting to compare the above results with those reported in [Zhang et al.,
2016], which utilizes UCB based exploration. It can be seen that Thompson sampling can achieve
more efficient performance in practice as in many other bandit problems.

5.2 Multi-Label Performance Measure Adaptation

The multi-label classification task is utilized to evaluate the effectiveness of DL2M and Adapt-Boost,
both separately and jointly. It is well-known that for multi-label learning, various performance
measures exist, and the choice of the performance measure will largely affect the evaluation of
the learned classifier. In [Wu and Zhou, 2017], two notions of multi-label margin, i.e. label-wise
and instance-wise margins are proposed to characterize different multi-label performance measures.
According to their work, one specific multi-label performance measure tends to be biased towards
one of the two margins, such that optimizing the corresponding margin will also make the measure
optimized. Based on this finding, the stochastic gradient descent (SGD) based LIMO algorithm is
proposed to jointly optimize the both margins, in order to achieve good performance on different
measures simultaneously. The high-level formulation of LIMO’s objective is

LLIMO = Λ+ w1Llabel + w2Linst, (12)
in which Llabel, Linst are two margin loss terms for maximizing the two margins, and Λ is a reg-
ularization term. For LLIMO, the weights w1, w2 control the relative importance of the two loss
terms, thus different choices of the weights can significantly affect the performance. We will show
that by utilizing DL2M and Adapt-Boost, we can automatically find the proper weights between the
two margin losses in LIMO’s objective, and efficiently adapt to different performance measures.

The experiments are conducted on six benchmark multi-label datasets 1: emotions, CAL500, enron,
Corel5k, medical and bibtex. On each dataset, four multi-label performance measures are adopted
for evaluation, i.e. ranking loss, coverage, average precision and one error. Three LIMO based
comparison methods are adopted as baselines: (i) LIMO-label, which optimizes LLIMO with w1 =
1, w2 = 0, (ii) LIMO-inst, which optimizes LLIMO with w1 = 0, w2 = 1, (iii) LIMO, which
optimizes LLIMO with w1 = 1, w2 = 1 and corresponds to the recommended parameter in the
original paper. To evaluate DL2M and Adapt-Boost both separately and jointly, three adaptation
based approaches are tested: (i) ADAPT-hypo, which optimizes LLIMO with w1 = 1, w2 = 1
using Adapt-Boost, (ii) ADAPT-obj, which utilizes DL2M with SGD training, (iii) ADAPT-both,
which utilizes both DL2M and Adapt-Boost. To implement DL2M , each dataset is randomly split
into training, validation and testing set, with ratio of size 3:1:1. During the learning process, the
preference feedback is generated by testing the learned hypothesis on the validation set, and DL2M
is utilized to update the objective for 20 iterations, with c = 0.05, λ = 1. For Adapt-Boost, to
evaluate its efficiency, we only use half number of training iterations than standard LIMO training.
Furthermore, to make Adapt-Boost compatible to LIMO training, the SGD updates are utilized as
the weaker learners for adaptation.

The experimental results are illustrated in Table 1, and the average ranks in all experiments are
illustrated in Table 2. It can be seen that DL2M based method ADAPT-obj achieve better perfor-
mance than LIMO, which assigns fixed weights to the two margin losses. This phenomenon reveals

1http://mulan.sourceforge.net/datasets-mlc.html
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that DL2M can automatically identify the best trade-off among different element objectives. Further-
more, though running with much fewer training iterations, Adapt-Boost based method ADAPT-hypo
achieves even better performance than LIMO, which is based on standard SGD training. This verifies
the efficiency of Adapt-Boost. ADAPT-both, which utilizes both two adaptation methods, achieves
superior performance. It shows that by utilizing DL2M and Adapt-Boost, we can effectively solve
the objective and hypothesis adaptation problem better and faster.

Dataset Algorithm ranking loss ↓ coverage ↓ avg. precision ↑ one-error ↓

emotions

LIMO-inst .420 ± .051(6) 2.950 ± .134(6) .603 ± .028(6) .500 ± .047(6)
LIMO-label .349 ± .028(5) 2.745 ± .174(5) .619 ± .025(5) .509 ± .064(5)

LIMO .299 ± .023(4) 2.483 ± .070(4) .648 ± .028(4) .498 ± .057(4)
ADAPT-hypo .279 ± .026(3) 2.331 ± .090(2) .671 ± .032(3) .481 ± .048(3)
ADAPT-obj .268 ± .033(2) 2.377 ± .144(3) .673 ± .033(2) .478 ± .062(2)
ADAPT-both .254 ± .020(1) 2.298 ± .200(1) .678 ± .028(1) .465 ± .058(1)

CAL500

LIMO-inst .522 ± .026(6) 162.950 ± 2.417(6) .153 ± .010(6) .971 ± .019(6)
LIMO-label .182 ± .005(2) 131.439 ± 1.764(5) .496 ± .006(5) .099 ± .026(2)

LIMO .182 ± .004(2) 131.020 ± 1.697(2) .498 ± .006(1) .131 ± .053(5)
ADAPT-hypo .182 ± .005(2) 131.297 ± 1.899(4) .497 ± .007(2) .128 ± .036(4)
ADAPT-obj .182 ± .005(2) 131.088 ± 1.849(3) .497 ± .007(2) .098 ± .028(1)
ADAPT-both .181 ± .004(1) 131.008 ± 2.072(1) .497 ± .008(2) .107 ± .024(3)

enron

LIMO-inst .229 ± .010(6) 25.166 ± .957(6) .504 ± .017(6) .350 ± .043(6)
LIMO-label .087 ± .009(3) 12.362 ± .612(5) .672 ± .014(4) .235 ± .024(1)

LIMO .089 ± .009(5) 12.199 ± .625(4) .670 ± .014(5) .246 ± .029(3)
ADAPT-hypo .087 ± .009(3) 12.060 ± .648(2) .680 ± .013(2) .246 ± .022(3)
ADAPT-obj .086 ± .009(2) 12.049 ± .624(1) .675 ± .012(3) .251 ± .022(5)
ADAPT-both .085 ± .008(1) 12.066 ± .577(3) .683 ± .016(1) .242 ± .027(2)

Corel5k

LIMO-inst .302 ± .006(6) 188.785 ± 3.122(6) .101 ± .006(6) .893 ± .007(6)
LIMO-label .121 ± .005(3) 106.920 ± 2.457(5) .281 ± .005(1) .718 ± .017(1)

LIMO .130 ± .004(5) 104.465 ± 2.149(4) .222 ± .006(5) .793 ± .012(5)
ADAPT-hypo .121 ± .005(3) 101.668 ± 2.141(3) .252 ± .006(3) .762 ± .014(3)
ADAPT-obj .118 ± .005(2) 100.478 ± 3.376(2) .247 ± .010(4) .772 ± .013(4)
ADAPT-both .114 ± .005(1) 98.880 ± 2.989(1) .280 ± .007(2) .719 ± .016(2)

medical

LIMO-inst .019 ± .005(2) 1.781 ± .337(5) .857 ± .020(5) .192 ± .034(5)
LIMO-label .028 ± .004(6) 2.326 ± .489(6) .830 ± .020(6) .216 ± .037(6)

LIMO .020 ± .005(4) 1.563 ± .249(3) .869 ± .026(2) .163 ± .028(1)
ADAPT-hypo .021 ± .004(5) 1.621 ± .246(4) .863 ± .023(4) .181 ± .031(4)
ADAPT-obj .019 ± .004(2) 1.499 ± .340(2) .874 ± .021(1) .171 ± .034(2)
ADAPT-both .018 ± .004(1) 1.447 ± .288(1) .866 ± .025(3) .176 ± .036(3)

bibtex

LIMO-inst .120 ± .003(6) 32.751 ± 1.144(6) .488 ± .007(6) .486 ± .018(6)
LIMO-label .072 ± .003(5) 20.460 ± .515(5) .526 ± .007(5) .440 ± .018(5)

LIMO .060 ± .002(4) 17.648 ± .596(4) .567 ± .007(4) .395 ± .014(4)
ADAPT-hypo .056 ± .002(1) 16.708 ± .430(1) .579 ± .007(2) .384 ± .013(2)
ADAPT-obj .057 ± .003(3) 17.119 ± .832(2) .575 ± .006(3) .391 ± .013(3)
ADAPT-both .056 ± .002(1) 17.128 ± .590(3) .581 ± .006(1) .383 ± .013(1)

Table 1: Experimental results for the adaptation based and LIMO based methods. For each measure,
“↓” indicates “the smaller the better” and “↑” indicates “the larger the better”. The results are shown
in mean±std(rank) format calculated from ten repeated experiments. The rank is calculated from
the mean. The smaller the rank, the better the performance. The first-ranked results are bolded.

Algorithm LIMO-inst LIMO-label LIMO ADAPT-hypo ADAPT-obj ADAPT-both
avg. rank 5.71 4.21 3.67 2.83 2.42 1.58

Table 2: The average performance rank in all experiments.

6 Conclusion and Future Work

In this work, the preference based objective adaptation task is studied. The DL2M algorithm is
proposed under this setting, which can efficiently solve the objective adaptation problem based on
the dueling bandit model. For better hypothesis adaptation, the Adapt-Boost method is proposed in
order to adapt the pre-learned element classifiers to the new objective with low cost.

To further investigate the objective adaptation problem, it is possible to relax the linear combinaiton
formulation of the objective function adopted in this work. We are also interested in applying the
proposed approaches in other real-world problems, especially the tasks in which human expert feed-
back can be utilized. Furthermore, it is also interesting to investigate Adapt-Boost on problems with
larger scale, as well as to study its theoretical guarantees.
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