NIPS Proceedingsβ

Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks

Part of: Advances in Neural Information Processing Systems 31 (NIPS 2018)

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


Electronic health records provide a rich source of data for machine learning methods to learn dynamic treatment responses over time. However, any direct estimation is hampered by the presence of time-dependent confounding, where actions taken are dependent on time-varying variables related to the outcome of interest. Drawing inspiration from marginal structural models, a class of methods in epidemiology which use propensity weighting to adjust for time-dependent confounders, we introduce the Recurrent Marginal Structural Network - a sequence-to-sequence architecture for forecasting a patient's expected response to a series of planned treatments. Using simulations of a state-of-the-art pharmacokinetic-pharmacodynamic (PK-PD) model of tumor growth, we demonstrate the ability of our network to accurately learn unbiased treatment responses from observational data – even under changes in the policy of treatment assignments – and performance gains over benchmarks.