## Constant Regret, Generalized Mixability, and Mirror Descent

Part of: Advances in Neural Information Processing Systems 31 (NIPS 2018)

[PDF] [BibTeX] [Supplemental] [Reviews]### Authors

### Conference Event Type: Poster

### Abstract

We consider the setting of prediction with expert advice; a learner makes predictions by aggregating those of a group of experts. Under this setting, and for the right choice of loss function and ``mixing'' algorithm, it is possible for the learner to achieve a constant regret regardless of the number of prediction rounds. For example, a constant regret can be achieved for \emph{mixable} losses using the \emph{aggregating algorithm}. The \emph{Generalized Aggregating Algorithm} (GAA) is a name for a family of algorithms parameterized by convex functions on simplices (entropies), which reduce to the aggregating algorithm when using the \emph{Shannon entropy} $\operatorname{S}$. For a given entropy $\Phi$, losses for which a constant regret is possible using the \textsc{GAA} are called $\Phi$-mixable. Which losses are $\Phi$-mixable was previously left as an open question. We fully characterize $\Phi$-mixability and answer other open questions posed by \cite{Reid2015}. We show that the Shannon entropy $\operatorname{S}$ is fundamental in nature when it comes to mixability; any $\Phi$-mixable loss is necessarily $\operatorname{S}$-mixable, and the lowest worst-case regret of the \textsc{GAA} is achieved using the Shannon entropy. Finally, by leveraging the connection between the \emph{mirror descent algorithm} and the update step of the GAA, we suggest a new \emph{adaptive} generalized aggregating algorithm and analyze its performance in terms of the regret bound.