
Bayesian Model-Agnostic Meta-Learning

Jaesik Yoon∗3, Taesup Kim∗‡2, Ousmane Dia1, Sungwoong Kim4,

Yoshua Bengio2,5, Sungjin Ahn‡6

1Element AI, 2MILA Université de Montréal, 3SAP, 4Kakao Brain,
5CIFAR Senior Fellow, 6Rutgers University

Abstract

Due to the inherent model uncertainty, learning to infer Bayesian posterior from a
few-shot dataset is an important step towards robust meta-learning. In this paper,
we propose a novel Bayesian model-agnostic meta-learning method. The proposed
method combines efficient gradient-based meta-learning with nonparametric varia-
tional inference in a principled probabilistic framework. Unlike previous methods,
during fast adaptation, the method is capable of learning complex uncertainty
structure beyond a simple Gaussian approximation, and during meta-update, a
novel Bayesian mechanism prevents meta-level overfitting. Remaining a gradient-
based method, it is also the first Bayesian model-agnostic meta-learning method
applicable to various tasks including reinforcement learning. Experiment results
show the accuracy and robustness of the proposed method in sinusoidal regression,
image classification, active learning, and reinforcement learning.

1 Introduction

Two-year-old children can infer a new category from only one instance (Smith & Slone, 2017). This
is presumed to be because during early learning, a human brain develops foundational structures such
as the “shape bias” in order to learn the learning procedure (Landau et al., 1988). This ability, also
known as learning to learn or meta-learning (Biggs, 1985; Bengio et al., 1990), has recently obtained
much attention in machine learning by formulating it as few-shot learning (Lake et al., 2015; Vinyals
et al., 2016). Because, initiating the learning from scratch, a neural network can hardly learn anything
meaningful from such a few data points, a learning algorithm should be able to extract the statistical
regularity from past tasks to enable warm-start for subsequent tasks.

Learning a new task from a few examples inherently induces a significant amount of uncertainty. This
is apparent when we train a complex model such as a neural network using only a few examples. It
is also empirically supported by the fact that a challenge in existing few-shot learning algorithms
is their tendency to overfit (Mishra et al., 2017). A robust meta-learning algorithm therefore must
be able to systematically deal with such uncertainty in order to be applicable to critical problems
such as healthcare and self-driving cars. Bayesian inference provides a principled way to address
this issue. It brings us not only robustness to overfitting but also numerous benefits such as improved
prediction accuracy by Bayesian ensembling (Balan et al., 2015), active learning (Gal et al., 2016), and
principled/safe exploration in reinforcement learning (Houthooft et al., 2016). Therefore, developing
a Bayesian few-shot learning method is an important step towards robust meta-learning.

Motivated by the above arguments, in this paper we propose a Bayesian meta-learning method,
called Bayesian MAML. By introducing Bayesian methods for fast adaptation and meta-update, the
proposed method learns to quickly obtain an approximate posterior of a given unseen task and thus

∗Equal contribution, Correspondence to sungjin.ahn@rutgers.edu, ‡Work done also while working at
Element AI

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

provides the benefits of having access to uncertainty. Being an efficient and scalable gradient-based
meta-learner which encodes the meta-level statistical regularity in the initial model parameters,
our method is the first Bayesian model-agnostic meta-learning method which is thus applicable to
various tasks including reinforcement learning. Combining an efficient nonparametric variational
inference method with gradient-based meta-learning in a principled probabilistic framework, it can
learn complex uncertainty structures while remaining simple to implement.

The main contributions of the paper are as follows. We propose a novel Bayesian method for meta-
learning. The proposed method is based on a novel Bayesian fast adaptation method and a new
meta-update loss called the Chaser loss. To our knowledge, the Bayesian fast adaptation is the first in
meta-learning that provides flexible capability to capture the complex uncertainty curvature of the
task-posterior beyond a simple Gaussian approximation. Furthermore, unlike the previous methods,
the Chaser loss prevents meta-level overfitting. In experiments, we show that our method is efficient,
accurate, robust, and applicable to various problems: sinusoidal regression, image classification,
reinforcement learning, and active learning.

2 Preliminaries

Consider a model y = fθ(x) parameterized by and differentiable w.r.t. θ. Task τ is specified by a
K-shot dataset Dτ that consists of a small number of training examples, e.g., K pairs (xk, yk) per
class for classification. We assume that tasks are sampled from a task distribution τ ∼ p(T) such that
the sampled tasks share the statistical regularity of the task distribution. A meta-learning algorithm
leverages this regularity to improve the learning efficiency of subsequent tasks. The whole dataset of
tasks is divided into training/validation/test tasksets, and the dataset of each task is further divided
into task-training/task-validation/task-test datasets.

Model-Agnostic Meta Learning (MAML) proposed by Finn et al. (2017) is a gradient-based meta-
learning framework. Because it works purely by gradient-based optimization without requiring
additional parameters or model modification, it is simple and generally applicable to any model as
long as the gradient can be estimated.

In Algorithm 1, we briefly review MAML. At each meta-train iteration t, it performs: (i) Task-
Sampling: a mini-batch Tt of tasks is sampled from the task distribution p(T). Each task τ ∈ Tt
provides task-train data Dtrn

τ and task-validation data Dval
τ . (ii) Fast Adaptation (or Inner-Update):

the parameter for each task τ in Tt is updated by starting from the current generic initial model θ0
and then performing n gradient descent steps on the task-train loss, an operation which we denote by
GDn(θ0;D

trn
τ , α) with α being a step size. (iii) Meta-Update (or Outer-Update): the generic initial

parameter θ0 is updated by gradient descent. The meta-loss is the summation of task-validation losses
for all tasks in Tt, i.e.,

∑

L(θτ ;D
val
τ) where the summation is over all τ ∈ Tt. At meta-test time,

given an unseen test-task τ̄ ∼ p(T), starting from the optimized initial model θ∗0 , we obtain a model
θτ̄ by taking a small number of inner-update steps using K-shot task-training data Dtrn

τ̄ . Then, the
learned model θτ̄ is evaluated on the task-test dataset Dtst

τ̄ .

Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016) is a recently proposed nonpara-
metric variational inference method. SVGD combines the strengths of MCMC and variational
inference. Unlike traditional variational inference, SVGD does not confine the family of approximate
distributions within tractable parametric distributions while still remaining a simple algorithm. Also, it
converges faster than MCMC because its update rule is deterministic and leverages the gradient of the
target distribution. Specifically, to obtain M samples from target distribution p(θ), SVGD maintains
M instances of model parameters, called particles. We denote the particles by Θ = {θm}Mm=1. At
iteration t, each particle θt ∈ Θt is updated by the following rule:

θt+1 ← θt + ǫtφ(θt) where φ(θt) =
1

M

M
∑

j=1

[

k(θjt , θt)∇θ
j
t
log p(θjt) +∇θ

j
t
k(θjt , θt)

]

, (1)

where ǫt is step-size and k(x, x′) is a positive-definite kernel. We can see that a particle consults
with other particles by asking their gradients, and thereby determines its own update direction. The
importance of other particles is weighted according to the kernel distance, relying more on closer
particles. The last term ∇θjk(θj , θm) enforces repulsive force between particles so that they do not
collapse to a point. The resulting particles can be used to obtain the posterior predictive distribution
p(y|x,Dτ) =

∫

p(y|x, θ)p(θ|Dτ)dθ ≈ 1
M

∑

m p(y|x, θm) where θm ∼ p(θ|Dτ).

2

Algorithm 1 MAML

Sample a mini-batch of tasks Tt from p(T)
for each task τ ∈ Tt do
θτ ← GDn(θ0;D

trn
τ , α)

end for
θ0 ← θ0 − β∇θ0

∑

τ∈Tt
L(θτ ;D

val
τ)

Algorithm 2 Bayesian Fast Adaptation

Sample a mini-batch of tasks Tt from p(T)
for each task τ ∈ Tt do
Θτ (Θ0)← SVGDn(Θ0;D

trn
τ , α)

end for
Θ0 ← Θ0 − β∇Θ0

∑

τ∈Tt
LBFA(Θτ (Θ0);D

val
τ)

A few properties of SVGD are particularly relevant to the proposed method: (i) when the number of
particles M equals 1, SVGD becomes standard gradient ascent on the objective log p(θ), (ii) under
a certain condition, an SVGD-update increasingly reduces the distance between the approximate
distribution defined by the particles and the target distribution, in the sense of Kullback-Leibler
(KL) divergence (Liu & Wang, 2016), and finally (iii) it is straightforward to apply to reinforcement
learning by using Stein Variational Policy Gradient (SVPG) (Liu et al., 2017).

3 Proposed Method

3.1 Bayesian Fast Adaptation

Our goal is to learn to infer by developing an efficient Bayesian gradient-based meta-learning method
to efficiently obtain the task-posterior p(θτ |D

trn
τ) of a novel task. As our method is in the same

class as MAML – in the sense that it encodes the meta-knowledge in the initial model by gradient-
based optimization – we first consider the following probabilistic interpretation of MAML with one
inner-update step,

p(Dval
T | θ0,D

trn
T) =

∏

τ∈T

p(Dval
τ | θ

′
τ = θ0 + α∇θ0 log p(D

trn
τ | θ0)), (2)

where p(Dval
τ |θ

′
τ) =

∏|Dval
τ |

i=1 p(yi|xi, θ
′
τ),D

trn
T denotes all task-train sets in training taskset T , andDval

T
has the same meaning but for task-validation sets. From the above, we can see that the inner-update
step of MAML amounts to obtaining task model θ′τ from which the likelihood of the task-validation
set Dval

τ is computed. The meta-update step is then to perform maximum likelihood estimation of
this model w.r.t. the initial parameter θ0. This probabilistic interpretation can be extended further to
applying empirical Bayes to a hierarchical probabilistic model (Grant et al., 2018) as follows:

p(Dval
T | θ0,D

trn
T) =

∏

τ∈T

(
∫

p(Dval
τ | θτ)p(θτ | D

trn
τ , θ0)dθτ

)

. (3)

We see that the probabilistic MAML model in Eq. (2) is a special case of Eq. (3) that approximates
the task-train posterior p(θτ |θ0,D

trn
τ) by a point estimate θ′τ . That is, p(θτ |D

trn
τ , θ0) = δθ′

τ
(θτ) where

δy(x) = 1 if x = y, and 0 otherwise. To model the task-train posterior which also becomes the
prior of task-validation set, Grant et al. (2018) used an isotropic Gaussian distribution with a fixed
variance.

“Can we use a more flexible task-train posterior than a point estimate or a simple Gaussian dis-
tribution while maintaining the efficiency of gradient-based meta-learning?” This is an important
question because as discussed in Grant et al. (2018), the task-train posterior of a Bayesian neural
network (BNN) trained with a few-shot dataset would have a significant amount of uncertainty which,
according to the Bayesian central limit theorem (Le Cam, 1986; Ahn et al., 2012), cannot be well
approximated by a Gaussian distribution.

Our first step for designing such an algorithm starts by noticing that SVGD performs deterministic
updates and thus gradients can be backpropagated through the particles. This means that we now
maintain M initial particles Θ0 and by obtaining samples from the task-train posterior p(θτ |D

trn
τ ,Θ0)

using SVGD (which is now conditioned on Θ0 instead of θ0), we can optimize the following Monte
Carlo approximation of Eq. (3) by computing the gradient of the meta-loss log p(Dval

T |Θ0,D
trn
T) w.r.t.

Θ0,

p(Dval
T | Θ0,D

trn
T) ≈

∏

τ∈T

(

1

M

M
∑

m=1

p(Dval
τ | θ

m
τ)

)

where θmτ ∼ p(θτ | D
trn
τ ,Θ0). (4)

3

Being updated by gradient descent, it hence remains an efficient meta-learning method while providing
a more flexible way to capture the complex uncertainty structure of the task-train posterior than a
point estimate or a simple Gaussian approximation.

Algorithm 2 describes an implementation of the above model. Specifically, at iteration t, for each
task τ in a sampled mini-batch Tt, the particles initialized to Θ0 are updated for n steps by ap-

plying the SVGD updater, denoted by SVGDn(Θ0;D
trn
τ) – the target distribution (the p(θjt) in

Eq. (1) is set to the task-train posterior p(θτ |D
trn
τ) ∝ p(Dtrn

τ |θτ)p(θτ)
1. This results in task-wise

particles Θτ for each task τ ∈ Tt. Then, for the meta-update, we can use the following meta-loss,
log p(Dval

Tt
|Θ0,D

trn
Tt
)

≈
∑

τ∈Tt

LBFA(Θτ (Θ0);D
val
τ) where LBFA(Θτ (Θ0);D

val
τ) = log

[

1

M

M
∑

m=1

p(Dval
τ |θ

m
τ)

]

, (5)

Here, we use Θτ (Θ0) to explicitly denote that Θτ is a function of Θ0. Note that, by the above model,
all the initial particles in Θ0 are jointly updated in such a way as to find the best joint-formation
among them. From this optimized initial particles, the task-posterior of a new task can be obtained
quickly, i.e., by taking a small number of update steps, and efficiently, i.e, with a small number of
samples. We call this Bayesian Fast Adaptation (BFA). The method can be considered a Bayesian
ensemble in which, unlike non-Bayesian ensemble methods, the particles interact with each other to
find the best formation representing the task-train posterior. Because SVGD with a single particle,
i.e., M = 1, is equal to gradient ascent, Algorithm 2 reduces to MAML when M = 1.

Although the above algorithm brings the power of Bayesian inference to fast adaptation, it can be
numerically unstable due to the product of the task-validation likelihood terms. More importantly, for
meta-update it is not performing Bayesian inference. Instead, it looks for the initial prior Θ0 such
that SVGD-updates lead to minimizing the empirical loss on task-validation sets. Therefore, like
other meta-learning methods, the BFA model can still suffer from overfitting despite the fact that
we use a flexible Bayesian inference in the inner update. The reason is somewhat apparent. Because
we perform only a small number of inner-updates while the meta-update is based on empirical
risk minimization, the initial model Θ0 can be overfitted to the task-validation sets when we use
highly complex models like deep neural networks. Therefore, to become a fully robust meta-learning
approach, it is desired for the method to retain the uncertainty during the meta-update as well while
remaining an efficient gradient-based method.

3.2 Bayesian Meta-Learning with Chaser Loss

Motivated by the above observation, we propose a novel meta-loss. For this, we start by defining
the loss as the dissimilarity between approximate task-train posterior pnτ ≡ pn(θτ |D

trn
τ ; Θ0) and true

task-posterior p∞τ ≡ p(θτ |D
trn
τ ∪ D

val
τ). Note that pnτ is obtained by taking n fast-adaptation steps

from the initial model. Assuming that we can obtain samples Θn
τ and Θ∞

τ respectively from these
two distributions, the new meta-learning objective can be written as

argmin
Θ0

∑

τ

dp(p
n
τ ‖ p

∞
τ) ≈ argmin

Θ0

∑

τ

ds(Θ
n
τ (Θ0) ‖ Θ

∞
τ). (6)

Here, dp(p‖q) is a dissimilarity between two distributions p and q, and ds(s1‖s2) a distance between
two sample sets. We then want to minimize this distance using gradient w.r.t. Θ0. This is to find
optimized Θ0 from which the task-train posterior can be obtained quickly and closely to the true
task-posterior. However, this is intractable because we neither have access to the true posterior p∞τ
nor its samples Θ∞

τ .

To this end, we approximate Θ∞
τ by Θn+s

τ . This is done by (i) obtaining Θn
τ from pn(θτ |D

trn
τ ; Θ0)

and then (ii) taking s additional SVGD steps with the updated target distribution p(θτ |D
trn
τ ∪ D

val
τ),

i.e., augmented with additional observation Dval
τ . Although it is valid in theory not to augment the

leader with the validation set, to help fast convergence we take advantage of it like other meta-learning
methods. Note that, because SVGD-updates provide increasingly better approximations of the target

1In our experiments, we put hyperprior on the variance of the prior (mean is set to 0). Thus, the posterior of
hyperparameter is automatically learned also by SVGD, i.e., the particle vectors include the prior parameters.

4

Algorithm 3 Bayesian Meta-Learning with Chaser Loss (BMAML)

1: Initialize Θ0

2: for t = 0, . . . until converge do
3: Sample a mini-batch of tasks Tt from p(T)
4: for each task τ ∈ Tt do
5: Compute chaser Θn

τ (Θ0) = SVGDn(Θ0;D
trn
τ , α)

6: Compute leader Θn+s
τ (Θ0) = SVGDs(Θ

n
τ (Θ0);D

trn
τ ∪ D

val
τ , α)

7: end for
8: Θ0 ← Θ0 − β∇Θ0

∑

τ∈Tt
ds(Θ

n
τ (Θ0) ‖ stopgrad(Θn+s

τ (Θ0)))
9: end for

distribution as s increases, the leader Θn+s
τ becomes closer to the target distribution Θ∞

τ than the
chaser Θn

τ . This gives us the following meta-loss:

LBMAML(Θ0) =
∑

τ∈Tt

ds(Θ
n
τ ‖ Θ

n+s
τ) =

∑

τ∈Tt

M
∑

m=1

‖θn,mτ − θn+s,m
τ ‖22. (7)

Here, to compute the distance between the two sample sets, we make a one-to-one mapping between
the leader particles and the chaser particles and compute the Euclidean distance between the paired
particles. Note that we do not back-propagate through the leader particles because we use them as
targets that the chaser particles follow. A more sophisticated method like maximum mean discrepancy
(Borgwardt et al., 2006) can also be used here. In our experiments, setting n and s to a small number
like n = s = 1 worked well.

Minimizing the above loss w.r.t. Θ0 places Θ0 in a region where the chaser Θn
τ can efficiently

chase the leader Θn+s
τ in n SVGD-update steps starting from Θ0. Thus, we call this meta-loss the

Chaser loss. Because the leader converges to the posterior distribution instead of doing empirical risk
minimization, it retains a proper level of uncertainty and thus prevents from meta-level overfitting. In
Algorithm 3, we describe the algorithm for supervised learning. One limitation of the method is that,
like other ensemble methods, it needs to maintain M model instances. Because this could sometimes
be an issue when training a large model, in the Experiment section we introduce a way to share
parameters among the particles.

4 Related Works

There have been many studies in the past that formulate meta-learning and learning-to-learn from a
probabilistic modeling perspective (Tenenbaum, 1999; Fe-Fei et al., 2003; Lawrence & Platt, 2004;
Daumé III, 2009). Since then, the remarkable advances in deep neural networks (Krizhevsky et al.,
2012; Goodfellow et al., 2016) and the introduction of new few-shot learning datasets (Lake et al.,
2015; Ravi & Larochelle, 2017), have rekindled the interest in this problem from the perspective of
deep networks for few-shot learning (Santoro et al., 2016; Vinyals et al., 2016; Snell et al., 2017;
Duan et al., 2016; Finn et al., 2017; Mishra et al., 2017). Among these, Finn et al. (2017) proposed
MAML that formulates meta-learning as gradient-based optimization.

Grant et al. (2018) reinterpreted MAML as a hierarchical Bayesian model, and proposed a way
to perform an implicit posterior inference. However, unlike our proposed model, the posterior on
validation set is approximated by local Laplace approximation and used a relatively complex 2nd-order
optimization using K-FAC (Martens & Grosse, 2015). The fast adaptation is also approximated by a
simple isotropic Gaussian with fixed variance. As pointed by Grant et al. (2018), this approximation
would not work well for skewed distributions, which is likely to be the case of BNNs trained
on a few-shot dataset. The authors also pointed that their method is limited in that the predictive
distribution over new data-points is approximated by a point estimate. Our method resolves these
limitations. Although it can be expensive when training many large networks, we mitigate this cost
by parameter sharing among the particles. In addition, Bauer et al. (2017) also proposed Gaussian
approximation of the task-posterior and a scheme of splitting the feature network and the classifier
which is similar to what we used for the image classification task. Lacoste et al. (2017) proposed
learning a distribution of stochastic input noise while fixing the BNN model parameter.

5

Figure 1: Sinusoidal regression experimental results (meta-testing performance) by varying the number of
examples (K-shot) given for each task and the number of tasks |T | used for meta-training.

5 Experiments

We evaluated our proposed model (BMAML) in various few-shot learning tasks: sinusoidal regression,
image classification, active learning, and reinforcement learning. Because our method is a Bayesian
ensemble, as a baseline model we used an ensemble of independent MAML models (EMAML)
from which we can easily recover regular MAML by setting the number of particles to 1. In all
our experiments, we configured BMAML and EMAML to have the same network architecture and
used the RBF kernel. The experiments are designed in such a way to see the effects of uncertainty in
various ways such as accuracy, robustness, and efficient exploration.

Regression: The population of the tasks is defined by a sinusoidal function y = A sin(wx+ b) + ǫ
which is parameterized by amplitude A, frequency w, and phase b, and observation noise ǫ. To sample
a task, we sample the parameters uniformly randomly A ∈ [0.1, 5.0], b ∈ [0.0, 2π], w ∈ [0.5, 2.0]
and add observation noise from ǫ ∼ N (0, (0.01A)2). The K-shot dataset is obtained by sampling x
from [−5.0, 5.0] and then by computing its corresponding y with noise ǫ. Note that, because of the
highly varying frequency and observation noise, this is a more challenging setting containing more
uncertainty than the setting used in Finn et al. (2017). For the regression model, we used a neural
network with 3 layers each of which consists of 40 hidden units.

In Fig. 1, we show the mean squared error (MSE) performance on the test tasks. To see the effect of
the degree of uncertainty, we controlled the number of training tasks |T | to 100 and 1000, and the
number of observation shots K to 5 and 10. The lower number of training tasks and observation shots
is expected to induce a larger degree of uncertainty. We observe, as we claimed, that both MAML
(which is EMAML with M = 1) and EMAML overfit severely in the settings with high uncertainty
although EMAML with multiple particles seems to be slightly better than MAML. BMAML with the
same number of particles provides significantly better robustness and accuracy for all settings. Also,
having more particles tends to improve further.

Classification: To evaluate the proposed method on a more complex model, we test the performance
on the miniImagenet classification task (Vinyals et al., 2016) involving task adaptation of 5-way
classification with 1 shot. The dataset consists of 60,000 color images of 84×84 dimension. The
images consist of total 100 classes and each of the classes contains 600 examples. The entire classes
are split into 64, 12, and 24 classes for meta-train, meta-validation, and meta-test, respectively. We
generated the tasks following the same procedure as in Finn et al. (2017).

In order to reduce the space and time complexity of the ensemble models (i.e., BMAML and EMAML)
in this large network setting, we used the following parameter sharing scheme among the particles,
similarly to Bauer et al. (2017). We split the network architecture into the feature extractor layers and
the classifier. The feature extractor is a convolutional network with 5 hidden layers with 64 filters.
The classifier is a single-layer fully-connected network with softmax output. The output of the feature
extractor which has 256 dimensions is input to the classifier. We share the feature extractor across
all the particles while each particle has its own classifier. Therefore, the space complexity of the
network is O(|θfeature| +M |θclassifier|). Both the classifier and feature extractor are updated during
meta-update, but for inner-update only the classifier is updated. The baseline models are updated in
the same manner. We describe more details of the setting in Appendix A.2.

We can see from Fig. 2 (a) that for both M = 5 and M = 10 BMAML provides more accurate
predictions than EMAML. However, the performance of both BMAML and EMAML with 10

6

(a) (b) (c)
Figure 2: Experimental results inminiImagenet dataset: (a) few-shot image classi�cation using different number
of particles, (b) using different number of tasks for meta-training, and (c) active learning setting.

particles is slightly lower than having 5 particles2. Because a similar instability is also observed
in the SVGD paper (Liu & Wang, 2016), we presume that one possible reason is the instability of
SVGD such as sensitivity to kernel function parameters. To increase the inherent uncertainty further,
in Fig. 2 (b), we reduced the number of training tasksjT j from 800K to 10K. We see that BMAML
provides robust predictions even for such a small number of training tasks while EMAML over�ts
easily.

Active Learning: In addition to the ensembled prediction accuracy, we can also evaluate the ef-
fectiveness of the measured uncertainty by applying it to active learning. To demonstrate, we use
theminiImagenet classi�cation task. To do this, given an unseen task� at test time, we �rst run
a fast adaptation from the meta-trained initial particles� �

0 to obtain� � of the task-train poste-
rior p(� � jD � ; � �

0). For this we used 5-way 1-shot labeled dataset. Then, from a pool of unla-
beled dataX� = f x1; : : : ; x20g, we choose an itemx � that has the maximum predictive entropy
arg maxx 2X �

H[yjx; D �] = �
P

y0 p(y0jx; D �) log p(y0jx; D �). The chosen itemx � is then re-
moved fromX� and added toD� along with its label. We repeat this process until we consume all
the data inX� . We setM to 5. As we can see from Fig. 2 (c), active learning using the Bayesian
fast adaptation provides consistently better results than EMAML. Particularly, the performance gap
increases as more examples are added. This shows that the examples picked by BMAML so as
to reduce the uncertainty, provides proper discriminative information by capturing a reasonable
approximation of the task-posterior. We presume that the performance degradation observed in the
early stage might be due to the class imbalance induced by choosing examples without considering
the class balance.

Reinforcement Learning: SVPG is a simple way to apply SVGD to policy optimization. Liu et al.
(2017) showed that the maximum entropy policy optimization can be recast to Bayesian inference. In
this framework, the particle update rule (a particle is now parameters of a policy) is simply to
replace the target distributionlogp(�) in Eq.(1) with the objective of the maximum entropy policy
optimization, i.e.,Eq(�) [J (�)] + � H[q]] whereq(�) is a distribution of policies,J (�) is the expected
return of policy� , and� is a parameter for exploration control. Deploying multiple agents (particles)
with a principled Bayesian exploration mechanism, SVPG encourages generating diverse policy
behaviours while being easy to parallelize.

We test and compare the models on the same MuJoCo continuous control tasks (Todorov et al., 2012)
as are used in Finn et al. (2017). In the goal velocity task, the agent receives higher rewards as its
current velocity approaches the goal velocity of the task. In the goal direction task, the reward is the
magnitude of the velocity in either the forward or backward direction. We tested these tasks for two
simulated robots, the ant and the cheetah. The goal velocity is sampled uniformly at random from
[0:0; 2:0] for the cheetah and from[0:0; 3:0] for the ant. As the goal velocity and the goal direction
change per task, a meta learner is required to learn a given unseen task after tryingK episodes. We
implemented the policy network with two hidden-layers each with 100 ReLU units. We tested the
number of particles forM 2 f 1; 5; 10g with M = 1 only for non-ensembled MAML. We describe
more details of the experiment setting in Appendix C.1.

2We found a similar instability in the relationship between the number of particles and the prediction accuracy
from the original implementation by the authors of the SVGD paper.

7

