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Abstract

Recommender systems have attracted much attention during the past decade. Many
attack detection algorithms have been developed for better recommendations,
mostly focusing on shilling attacks, where an attack organizer produces a large
number of user profiles by the same strategy to promote or demote an item. This
work considers another different attack style: unorganized malicious attacks, where
attackers individually utilize a small number of user profiles to attack different
items without organizer. This attack style occurs in many real applications, yet
relevant study remains open. We formulate the unorganized malicious attacks
detection as a matrix completion problem, and propose the Unorganized Malicious
Attacks detection (UMA) algorithm, based on the alternating splitting augmented
Lagrangian method. We verify, both theoretically and empirically, the effectiveness
of the proposed approach.

1 Introduction

Online activities have been an essential part in our daily life as the flourish of Internet, and it is
important to recommend suitable products effectively as the number of users and items increases
drastically. Various collaborative filtering techniques have been developed in diverse systems to help
customers choose their favorite products in a set of items [5, 18, 28]. However, most collaborative
filtering approaches are vulnerable to spammers and manipulations of ratings [13, 19], and attackers
could bias systems by inserting fake rating scores into the user-item rating matrix. Some attackers try
to increase the popularity of their own items (push attack) while the others intend to decrease the
popularity of their competitors’ items (nuke attack).

Detecting attacks from online rating systems is crucial to recommendations. Most attack detection
studies focus on shilling attacks [13], where all the attack profiles are produced by the same strategy
to promote or demote a particular item. For example, an attack organizer may produce hundreds of
fake user profiles with one strategy where each fake user profile gives high scores to the most popular
movies and low scores to the target movie. Relevant studies have shown good detection performance
on diverse shilling attack strategies [16, 19, 23].

Practical mechanisms have been developed to prevent shilling attacks. For example, lots of online
sites require real names and phone numbers for user registration; CAPTCHA is used to determine
whether the response is generated by a robot; customers are allowed to rate a product after purchasing
this product on the shopping website. These mechanisms produce high cost for conducting traditional
shilling attacks; for example, small online sellers in e-commerce like Amazon have insufficient
capacity to produce hundreds of fake rating profiles to conduct a shilling attack.

In this paper, we introduce another different attack model named unorganized malicious attacks,
where attackers individually use a small number of user profiles to attack their own targets without
organizer. This attack happens in many real applications: online sellers on Amazon may produce
a few fake customer profiles to demote their competitors’ high-quality products; writers may hire
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several users to give high scores to promote their own books. Actually, recommender systems may
be seriously influenced by small amounts of unorganized malicious attacks, e.g., the first maliciously
bad rating can decrease the sales of one seller by 13% [20]. So far as we know, the detection of
unorganized malicious attacks has rarely been studied, and existing attack detection approaches do
not work well on this kind of attack [26].

We formulate the unorganized malicious attacks detection as a variant of matrix completion problem.
Let X denote the ground-truth rating matrix without attacks and noises, and assume that the matrix
is low-rank since the users’ preferences are affected by several factors [31]. Let Y be the sparse
malicious-attack matrix, and Z denotes a small perturbation noise matrix. What we can observe is a
matrix M such that M = X + Y + Z.

We propose the Unorganized Malicious Attacks detection (UMA) algorithm, which can be viewed
as an extension of alternating splitting augmented Lagrangian method. Theoretically, we show
that the low-rank rating matrix X and the sparse matrix Y can be recovered under some classical
matrix-completion assumptions, and we present the global convergence of UMA with a worst-case
O(1/t) convergence rate. Finally, empirical studies are provided to verify the effectiveness of our
proposed algorithm in comparison with the state-of-the-art methods for attack detection.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 introduces
the framework of unorganized malicious attacks detection. Section 4 proposes the UMA algorithm.
Section 5 shows the theoretical justification. Section 6 reports the experimental results. Section 7
concludes this work.

2 Related Work

Collaborative filtering has been one of the most successful techniques to build recommender systems.
The core assumption of collaborative filtering is that if users have expressed similar interests in the
past, they will share common interest in the future [12]. Significant progress about collaborative
filtering has been made [5, 18, 28, 31]. There are two main categories of conventional collaborative
filtering (based on the user-item rating matrix) which are memory-based and model-based algorithms.

Collaborative filtering schemes are vulnerable to attacks [1, 13], and increasing attention has been
paid to attack detection. Researchers have proposed several methods which mainly focus on shilling
attacks where the attack organizer produces a large number of user profiles by the same strategy
to promote or demote a particular item. These methods mainly contain statistical, classification,
clustering and data reduction-based methods [13].

Statistical methods are used to detect anomalies with suspicious ratings. Hurley et al. [16] proposed
the Neyman-Pearson statistical attack detection method to distinguish malicious users from normal
users, and Li and Luo [17] introduced the probabilistic Bayesian network models. Based on attributes
derived from user profiles, classification methods detect attacks by kNN, SVM, etc. [14, 24]. Bhaumik
et al. [3] presented the unsupervised clustering algorithm based on several classification attributes
[7], and they apply k-means clustering based on these attributes and classify users in the smallest
cluster as malicious users. Variable selection method treats users as variables and calculates their
covariance matrix [22]. Users with the smallest coefficient in the first l principal components of
the covariance matrix are classified as malicious users. Ling et al. [19] utilized a low-rank matrix
factorization method to predict the users’ ratings. Users’ reputation is computed according to the
predicted ratings and low-reputed users are classified as malicious users.

These methods make detection by finding the common characteristics of the attack profiles that
differ from the normal profiles. Therefore, they have a common assumption that the attack profiles
are produced by the same attack strategy. However, this assumption does not hold for unorganized
malicious attacks, where different attackers use different strategies to attack their own targets.

Recovering low-dimensional structure from a corrupted matrix is related to robust PCA [4, 9, 33].
However, robust PCA focuses on recovering low-rank part X from complete or incomplete matrix,
and the target is different from attacks detection (which is our task). Our work considers the specific
properties of malicious attacks to distinguish the attack matrix Y from the small perturbation noise
term Z. In this way, our method can not only recover the low-rank part X , but also distinguish Y
from the noise term Z which leads to better performance.
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3 The Formulation

This section introduces some notations and problem formulation. We introduce the general form of
an attack profile, and give a detailed comparison between unorganized malicious attacks and shilling
attacks, followed by the corresponding detection problem formulation.

3.1 Notations

We begin with some notations used in this paper. Let ‖X‖, ‖X‖F and ‖X‖∗ denote the operator norm,
Frobenius norm and nuclear norm of matrix X , respectively. Let ‖X‖1 and ‖X‖∞ be the `1 and `∞
norm of matrix X , respectively. Further, we define the Euclidean inner product between two matrices
as 〈X,Y 〉 := trace(XY >), where Y > means the transpose of Y . We have ‖X‖2F = 〈X,X〉.
Let PΩ denote an operator of linear transformation over matrices space, and we also denote by PΩ

the linear space of matrices supported on Ω when it is clear from the context. Then, PΩ> represents
the space of matrices supported on Ωc. For an integer m, let [m] := {1, 2, . . . ,m}.
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Figure 1: General form of an attack profile.

3.2 Problem Formulation

Bhaumik et al. [2] introduced the general form of an attack profile, as shown in Figure 1. The attack
profile contains four parts. The single target item it is given a malicious rating, i.e., a high rating in
a push attack or a low rating in a nuke attack. The selected items IS are a group of selected items
for special treatment during the attack. The filler items IF are selected randomly to complete the
attack profile. The null part I∅ contains the rest of the items with no ratings. Functions θ, ζ and Υ
determine how to assign ratings to items in IS , IF and target item it, respectively. Three basic attack
strategies are listed as follows.

• Random attack: IS is empty; IF is selected randomly, and function ζ assigns ratings to IF
by generating random ratings centered around the overall average rating in the database.
• Average attack: IS is empty; IF is selected randomly, and function ζ assigns ratings to IF

by generating random ratings centered around the average rating of each item.
• Bandwagon attack: IS is selected from the popular items and function θ assigns high ratings

to IS . The filler items IF are handled similarly to random attack.

The shilling attack chooses one attack strategy (e.g., average attack strategy), and fixes the target
item it, the numbers of rated items k and l and the rating functions. This makes the generated attack
profiles have some common characteristics in one shilling attack. Besides, a large number of attack
profiles are required in the basic setting of shilling attacks.

However, unorganized malicious attacks allow the concurrence of various attack strategies, and
the number of rated items, the target item and the rating functions can be different. Each attacker
produces a small number of attack profiles with their own strategies and preference [26].

Let U[m] = {U1, U2, . . . , Um} and I[n] = {I1, I2, . . . , In} denote m users and n items, respectively.
Let X ∈ Rm×n be the ground-truth rating matrix. Xij denotes the score that user Ui gives to item Ij
without any attack or noise, i.e., Xij reflects the ground-truth feeling of user Ui on item Ij . Suppose
that the score range is [−R,R], and we have −R ≤ Xij ≤ R. In this work, we assume that X is a
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low-rank matrix as in classical matrix completion [30] and collaborative filtering [31]. The intuition
is that the user’ preferences may be influenced by a few factors.

The ground-truth matrix X may be corrupted by a system noisy matrix Z. For example, if Xij = 4.8
for i ∈ [m], then, it is acceptable that user Ui gives item Ij score 5 or 4.6. In this paper, we consider
the independent Gaussian noise, i.e., Z = (Zij)m×n where each element Zij is drawn i.i.d. from the
Gaussian distribution N (0, σ) with parameter σ.

Let M be the observed rating matrix. We define the unorganized malicious attacks formally as
follows: for every j ∈ [n], we have |U j | < γ with U j = {Ui|i ∈ [m] & |Mij −Xij | ≥ ε}. The
parameter ε distinguishes malicious users from the normal, and parameter γ limits the number of
user profiles attacking one item. Intuitively, unorganized malicious attacks consider that attackers
individually use a small number of user profiles to attack their own targets, and multiple independent
shilling attacks can be regarded as an example of unorganized malicious attacks if each shilling attack
contains a small number of attack profiles.

It is necessary to distinguish unorganized malicious attacks from noise. Generally speaking, user Ui
gives item Ij a normal score if |Mij −Xij | is very small, while user Ui makes an attack to item Ij if
|Mij −Xij | ≥ ε. For example, if the ground-truth score of item Ij is 4.8 for user Ui, then user Ui
makes a noisy rating by giving Ij score 5, yet makes an attack by giving Ij score −3. Therefore, we
assume that ‖Z‖F ≤ δ, where δ is a small parameter.

Let Y = M −X − Z = (Yij)m×n be the malicious-attack matrix. Then, Yij = 0 if user Ui does
not attack item Ij ; otherwise |Yij | ≥ ε. We assume that Y is a sparse matrix, whose intuition lies in
the small ratio of malicious ratings to all the ratings. Notice that we can not directly recover X and
Y from M because such recovery is an NP-Hard problem [9]. We consider the optimization problem
as follows:

min
X,Y,Z

‖X‖∗ + τ‖Y ‖1 − α〈M,Y 〉+
κ

2
‖Y ‖2F

s.t. X + Y + Z = M, ‖Z‖F ≤ δ.
(1)

Here ‖X‖∗ acts as a convex surrogate of the rank function to pursue the low-rank part. ‖Y ‖1 is
used to induce the sparse attack part. The term 〈M,Y 〉 is introduced to better distinguish Y and Z,
since the malicious rating bias Yij and the observed rating Mij have the same sign, i.e., MijYij > 0,
while each entry in Z is small and ZijMij can be either positive or negative. We have Yij < 0 and
Mij < 0 if it is a nuke attack; we also have Yij > 0 and Mij > 0 if it is a push attack. So the term
〈M,Y 〉 distinguishes Y from Z. ‖Y ‖2F is another strongly convex regularizer for Y . This term also
guarantees the optimal solution. τ , α and κ are tradeoff parameters.

In many real applications, we can not get the full matrix M , and partial entries can be observed. Let
Ω ∈ [m]× [n] be the set of observed entries. We define an orthogonal projection PΩ onto the linear
space of matrices supported on Ω ⊂ [m]× [n], i.e.,

PΩM =

{
Mij for (i, j) ∈ Ω,
0 otherwise.

The optimization framework for unorganized malicious attack detection can be formulated as follows.

min
X,Y,Z

‖X‖∗ + τ‖Y ‖1 − α〈M̄, Y 〉+
κ

2
‖Y ‖2F

s.t. X + Y + Z = M̄, Z ∈ B, B := {Z|‖PΩ(Z)‖F ≤ δ},
(2)

where κ > 0 and M̄ := PΩ(M). This formulation degenerates into robust PCA as κ→ 0 and α→ 0.
There have been many studies focusing on recovering low-rank part X from complete or incomplete
matrix [9, 11, 21, 27], while we distinguish the sparse attack term Y from the small perturbation term
Z. 〈M̄, Y 〉 is added to find nonzero entries of Y , and this yields better detection performance.

4 The Proposed Approach

In this section, we propose an alternating splitting augmented Lagrangian method to solve the
optimization problem (2), which can be guaranteed with global convergence.
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Algorithm 1 The UMA Algorithm
Input: matrix M and parameters τ , α, β, δ and κ.
Output: Label vector [y1, . . . , ym] where yi = 1 if user Ui is a malicious user; otherwise yi = 0.
Initialize: Y 0 = X0 = Λ0 = 0, yi = 0 (i = 1, . . . ,m), k = 0
Process:

1: while not converged do
2: Compute Zk+1, Xk+1 and Y k+1 by Eq. (4), (5) and (6), respectively.
3: Update the Lagrange multiplier Λk+1 by Λk − β(Xk+1 + Y k+1 + Zk+1 − M̄).
4: k = k + 1.
5: end while
6: if max(|Yi,:|) > 0, then yi = 1 (i = 1, . . . ,m).

The separable structure emerging in the objective function and constrains in Eq. (2) motivates us to
derive an efficient algorithm by splitting the optimization problem. However, it is rather difficult
to optimize this problem with theoretical guarantee, because this optimization involves three-block
variables. It is well-known that the direct extension of the alternating direction method of multipliers
may not be convergent for solving Eq. (2), a three-block convex minimization problem [10, 15, 32].

We propose an alternating splitting augmented Lagrangian method to decompose the optimization of
Eq. (2) into three sub-optimizations for the solutions of Zk+1, Xk+1 and Y k+1 separately. We will
provide global convergence guarantee with a worst-case O(1/t) convergence rate in Section 5.

We first get the augmented Lagrangian function of Eq. (2) as

LA(X,Y, Z,Λ, β) := ‖X‖∗ + τ‖Y ‖1 − α〈M̄, Y 〉+
κ

2
‖Y ‖2F − 〈Λ, L〉+

β

2
‖L‖2F , (3)

where L = X + Y + Z − M̄ and β is a positive constant.

Given (Xk, Y k,Λk), we update Zk+1 with the closed-form solution

Zk+1
ij =

{
min{1, δ/‖PΩN‖F }Nij if (i, j) ∈ Ω,
Nij otherwise, (4)

where N = 1
βΛk + M̄ −Xk − Y k. Lemma 2 gives the closed solution of Xk+1 as

Xk+1 = D1/β(M̄ +
1

β
Λk − Y k − Zk+1), (5)

where the nuclear-norm-involved shrinkage operator D1/β is defined in Lemma 2. Further, we update
Y k+1 and Lemma 1 gives the closed solution Y k+1 as

Y k+1 = Sτυ(
α+ β

β
M̄ +

1

β
Λk − Zk+1 −Xk+1)υβ, (6)

where υ = 1/(β + κ) and the shrinkage operator Sτυ is defined in Lemma 1. Finally, we update

Λk+1 = Λk − β(Xk+1 + Y k+1 + Zk+1 − M̄).

The pseudocode of the UMA algorithm is given in Algorithm 1.

5 Theoretical Analysis

This section presents our main theoretical results, whose detailed proofs and analysis are given in the
supplement document due to the page limitation. We begin with two helpful lemmas for the deviation
of our proposed algorithm as follows.

Lemma 1 [6] For τ > 0 and T ∈ Rm×n, the closed solution of minY τ‖Y ‖1 + ‖Y − T‖2F /2 is
matrix Sτ (T ) with (Sτ (T ))ij = max{|Tij | − τ, 0} · sgn(Tij), where sgn(·) means the sign function.

Lemma 2 [8] For µ > 0 and Y ∈ Rm×n with rank r, the closed solution of minX µ‖X‖∗ + ‖X −
Y ‖2F /2 is given by Dµ(Y ) = S diag(Sµ(Σ))D>, where Y = SΣD> denotes the singular value
decomposition of Y , and Sµ(Σ) is defined in Lemma 1.
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We now present theoretical guarantee that UMA can recover the low-rank component X0 and the
sparse component Y0. For simplicity, our theoretical analysis focuses on square matrix, and it is easy
to generalize our results to the general rectangular matrices.

Let X0 = SΣD> =
∑r
i=1 σisid

>
i be the singular value decomposition of X0 ∈ Rn×n, where r

is the rank of matrix X0, and σ1, . . . , σr are the positive singular values, and S = [s1, . . . , sr] and
D = [d1, . . . , dr] are the left- and right-singular matrices, respectively. For µ > 0, we assume

max
i
‖S>ei‖2 ≤ µr/n, max

i
‖D>ei‖2 ≤ µr/n, ‖SD>‖2∞ ≤ µr/n2. (7)

Theorem 1 Suppose that X0 satisfies the incoherence condition given by Eq. (7), and Ω is uniformly
distributed among all sets of size ω ≥ n2/10. We assume that each entry is corrupted independently
with probability q. Let X and Y be the solution of optimization problem given by Eq. (2) with
parameter τ = O(1/

√
n) , κ = O(1/

√
n) and α = O(1/n). For some constant c > 0 and

sufficiently large n, the following holds with probability at least 1− cn−10,

‖X0 −X‖F ≤ δ and ‖Y0 − Y ‖F ≤ δ

if rank(X0) ≤ ρrn/µ/log2n and q ≤ qs, where ρr and qs are positive constants.

We now prove the global convergence of UMA with a worst-case O(1/t) convergence rate measured
by iteration complexity. Let U = (Z;X;Y ) and W = (Z;X;Y ; Λ). We also define

θ(U) = ‖X‖∗ + τ‖Y ‖1 − α〈M,Y 〉+
κ

2
‖Y ‖2F and Uk+1

t =
1

t

∑t

k=1
Uk+1.

It follows from Corollaries 28.2.2 and 28.3.1 of [29] that the solution set of Eq. (2) is non-empty.
Then, let W ∗ = ((Z∗)>, (X∗)>, (Y ∗)>, (Λ∗)>)> be a saddle point of Eq. (2), and define U∗ =
((Z∗)>, (X∗)>, (Y ∗)>)>.

Theorem 2 For t iterations generated by UMA with β ∈
(
0, (
√

33− 5)κ/2
)
,

1) We have ‖Xk+1
t + Y k+1

t + Zk+1
t − PΩM‖2 ≤ c̄1/t2 for some constant c̄1 > 0.

2) We have |θ(Uk+1
t )− θ(U∗)| ≤ c̄2/t for some constant c̄2 > 0.

6 Experiments

In this section, we compare our proposed UMA with the state-of-the-art approaches for attack
detection. We consider three common evaluating metrics for attack detection as in [13]:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1 =
2× Precision× Recall

Precision + Recall

where TP is the number of attack profiles correctly detected as attacks, FP is the number of normal
profiles that are misclassified, and FN is the number of attack profiles that are misclassified.

6.1 Datasets

We first conduct our experiments on the common-used datasets MovieLens100K and MovieLens1M,
released by GroupLens [25]. These datasets are collected from a non-commercial recommender
system, and it is more likely that the users in this dataset are non-spam users. We take the users
already in the datasets as normal users. The rating scores range from 1 to 5, and we preprocess the
data by minus 3 to the range [−2, 2]. Dataset MovieLens100K contains 100000 ratings of 943 users
over 1682 movies, and dataset MovieLens1M contains 1000209 ratings of 6040 users over 3706
movies. We describe how to add attack profiles in Section 6.3.

We also collect a real dataset Douban10K1 with attack profiles from Douban website, where
registered users record rating information over various films, books, clothes, etc. We gather 12095
ratings of 213 users over 155 items. The rating scores range from 1 to 5, and we preprocess the data
by minus 3 to the range [−2, 2]. Among the 213 user profiles, 35 profiles are attack profiles.

1http://www.douban.com/.
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Table 1: Detection precision, recall and F1 on MovieLens100K and MovieLens1M. Here unorga-
nized malicious attacks are based on a combination of traditional strategies.

MovieLens100K MovieLens1M
Precision Recall F1 Precision Recall F1

UMA 0.934±0.003 0.883±0.019 0.908±0.011 0.739±0.009 0.785±0.023 0.761±0.016
RPCA 0.908±0.010 0.422±0.048 0.575±0.047 0.342±0.003 0.558±0.028 0.424±0.009

N-P 0.774±0.015 0.641±0.046 0.701±0.032 0.711±0.007 0.478±0.018 0.572±0.014
k-means 0.723±0.171 0.224±0.067 0.341±0.092 0.000±0.000 0.000±0.000 0.000±0.000

PCAVarSel 0.774±0.009 0.587±0.024 0.668±0.019 0.278±0.007 0.622±0.022 0.384±0.011
MF-based 0.911±0.009 0.814±0.008 0.860±0.009 0.407±0.005 0.365±0.004 0.385±0.005

Table 2: Detection precision, recall and F1 on MovieLens100K and MovieLens1M. Here unorga-
nized malicious attacks consider the hire of existing users in addition to combination.

MovieLens100K MovieLens1M
Precision Recall F1 Precision Recall F1

UMA 0.929±0.013 0.865±0.032 0.896±0.022 0.857±0.005 0.733±0.003 0.790±0.002
RPCA 0.797±0.046 0.659±0.097 0.721±0.097 0.635±0.012 0.391±0.022 0.484±0.015

N-P 0.244±0.124 0.145±0.089 0.172±0.084 0.273±0.020 0.099±0.031 0.144±0.035
k-means 0.767±0.029 0.234±0.042 0.357±0.051 0.396±0.026 0.300±0.039 0.341±0.035

PCAVarSel 0.481±0.027 0.168±0.017 0.248±0.023 0.120±0.006 0.225±0.012 0.157±0.008
MF-based 0.556±0.023 0.496±0.021 0.524±0.022 0.294±0.012 0.264±0.010 0.278±0.011

6.2 Comparison Methods and Implementation Details

We compare UMA with the state-of-the-art approaches for attack detection and robust PCA:

• N-P: A statistical algorithm based on the Neyman-Pearson statistics [16].
• k-means: A cluster algorithm based on classification attributes [3].
• PCAVarSel: A PCA-based variable selection algorithm [22].
• MF-based: A reputation estimation algorithm based on low-rank matrix factorization [19].
• RPCA: A low-rank matrix recovery method by considering sparse noise [9].

In the experiments, we set τ = 10/
√
m, α = 10/m and δ =

√
mn/200. A rating can be viewed

as a malicious rating if it deviates from the ground-truth rating by more than 3, since the scale of
ratings is from -2 to 2. We set parameter β = τ/3 according to Eq. (6) where the entries of Y will
be nullified if they are smaller than the threshold. We set κ = τ under the convergence condition
β ∈ (0, (

√
33 − 5)κ/2) as in Theorem 2. For the baseline methods, we take the results reported

in [26] for comparison.

6.3 Comparison Results

In the first experiment, we add attack profiles into the datasets MovieLens100K and MovieLens1M
by a combination of several traditional attack strategies. These traditional attack strategies include
average attack strategy, random attack strategy and bandwagon attack strategy, discussed in Sec-
tion 3.2. Specifically, each attacker randomly chooses one strategy to produce the user rating profiles
and promotes one item randomly selected from items with average rating lower than 0. In line with
the setting of previous attack detection works, we set the filler ratio (percentage of rated items in
total items) as 0.01 and the filler items are drawn from the top 10% most popular items. We set
the spam ratio (number of attack profiles/number of all user profiles) as 0.2. The experiment is
repeated 10 times, and the average performance is reported. Table 1 shows the experimental results
on datasets MovieLens100K and MovieLens1M under the attack profiles of a combination of
traditional strategies.

The second experiment studies a more general case of unorganized malicious attacks. We consider
that attackers can hire existing users to attack their targets, in addition to the profile injection attacks
as mentioned above. We set spam ratio as 0.2, where 25% of the attack profiles are produced similar
to the first experiment, and 75% of the attack profiles are from existing users by randomly changing
the rating of one item lower than 0 to +2. In this case, attacks are more difficult to be detected,
because the attack profiles are more similar to normal user profiles. The experiment is repeated 10
times and Table 2 demonstrates the comparison results on MovieLens100K and MovieLens1M.
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Table 3: Detection precision, recall and F1 on dataset Douban10K.

Methods UMA RPCA N-P k-means PCAVarSel MF-based

Precision 0.800 0.535 0.250 0.321 0.240 0.767
Recall 0.914 0.472 0.200 0.514 0.343 0.657

F1 0.853 0.502 0.222 0.396 0.282 0.708

Table 3 shows the experiments on dataset Douban10K. The experimental results in Table 1, 2 and 3
show that our proposed algorithm UMA achieves the best performance on all the datasets and three
measures: Precision, Recall and F1.

Traditional attack detection approaches perform ineffectively on unorganized malicious attacks
detection, because the success of those methods depends on the properties of shilling attacks, e.g., k-
means method and N-P method work well if the attack profiles are similar in the view of classification
attributes or latent categories, and PCAVarSel method achieves good performance only if attack
profiles have more common unrated items than normal profiles. In summary, these methods detect
attacks by identifying some common characteristics of attack profiles, while these do not hold in
unorganized malicious attacks. The RPCA and MF-based methods try to find the ground-truth rating
matrix from the observed rating matrix, whereas they hardly separate the sparse attack matrix from
the noisy matrix and tend to suffer from low precision, especially on large-scale and heavily sparse
dataset MovieLens1M.

We compare UMA with other approaches by varying the spam ratio from 2% to 20% since different
systems may contain different spam ratios (# attack profiles/# all user profiles). As can be shown
in Figure 2, UMA is robust and achieves the best performance in different spam ratios, whereas the
comparison methods (except the RPCA method) achieve worse performance for small spam ratio,
e.g., the N-P approach detects almost nothing. Although the RPCA method is as stable as UMA in
different spam ratios, there is a performance gap between RPCA and UMA which becomes bigger
when the dataset gets larger and sparser from MovieLens100K to MovieLens1M.

Figure 2: Detection precision and recall on MovieLens100K under unorganized malicious attacks.
The spam ratio (# attack profiles/# all user profiles) varies from 0.02 to 0.2.

7 Conclusion

Attack detection plays an important role to improve the quality of recommendation. Most previous
methods focus on shilling attacks, and the key idea for detecting such attacks is to find the common
characteristics of attack profiles with the same attack strategy. This paper considers the unorganized
malicious attacks, produced by multiple attack strategies to attack different targets. We formulate
unorganized malicious attacks detection as a variant of matrix completion problem, and we propose
the UMA algorithm and prove its recovery guarantee and global convergence. Experiments show that
UMA achieves significantly better performance than the state-of-the-art methods for attack detection.
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