NIPS Proceedingsβ

Sharp Bounds for Generalized Uniformity Testing

Part of: Advances in Neural Information Processing Systems 31 (NIPS 2018) pre-proceedings

[PDF] [BibTeX] [Supplemental]

Authors

Conference Event Type: Poster

Abstract

We study the problem of generalized uniformity testing of a discrete probability distribution: Given samples from a probability distribution p over an unknown size discrete domain Ω, we want to distinguish, with probability at least 2/3, between the case that p is uniform on some subset of Ω versus ε-far, in total variation distance, from any such uniform distribution. We establish tight bounds on the sample complexity of generalized uniformity testing. In more detail, we present a computationally efficient tester whose sample complexity is optimal, within constant factors, and a matching worst-case information-theoretic lower bound. Specifically, we show that the sample complexity of generalized uniformity testing is Θ(1/(ε^(4/3) ||p||_3) + 1/(ε^2 ||p||_2 )).