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Abstract

We propose a metalearning approach for learning gradient-based reinforcement
learning (RL) algorithms. The idea is to evolve a differentiable loss function,
such that an agent, which optimizes its policy to minimize this loss, will achieve
high rewards. The loss is parametrized via temporal convolutions over the agent’s
experience. Because this loss is highly flexible in its ability to take into account
the agent’s history, it enables fast task learning. Empirical results show that
our evolved policy gradient algorithm (EPG) achieves faster learning on several
randomized environments compared to an off-the-shelf policy gradient method.
We also demonstrate that EPG’s learned loss can generalize to out-of-distribution
test time tasks, and exhibits qualitatively different behavior from other popular
metalearning algorithms.

1 Introduction

Most current reinforcement learning (RL) agents approach each new task de novo. Initially, they have
no notion of what actions to try out, nor which outcomes are desirable. Instead, they rely entirely
on external reward signals to guide their initial behavior. Coming from such a blank slate, it is no
surprise that RL agents take far longer than humans to learn simple skills [12].

Figure 1: High-level overview of our
approach.

Our aim in this paper is to devise agents that have a prior
notion of what constitutes making progress on a novel task.
Rather than encoding this knowledge explicitly through a
learned behavioral policy, we encode it implicitly through
a learned loss function. The end goal is agents that can use
this loss function to learn quickly on a novel task. This
approach can be seen as a form of metalearning, in which
we learn a learning algorithm. Rather than mining rules
that generalize across data points, as in traditional ma-
chine learning, metalearning concerns itself with devising
algorithms that generalize across tasks, by infusing prior
knowledge of the task distribution [7].

Our method consists of two optimization loops. In the
inner loop, an agent learns to solve a task, sampled from a particular distribution over a family of
tasks. The agent learns to solve this task by minimizing a loss function provided by the outer loop. In
the outer loop, the parameters of the loss function are adjusted so as to maximize the final returns
achieved after inner loop learning. Figure 1 provides a high-level overview of this approach.

Although the inner loop can be optimized with stochastic gradient descent (SGD), optimizing the
outer loop presents substantial difficulty. Each evaluation of the outer objective requires training a
complete inner-loop agent, and this objective cannot be written as an explicit function of the loss
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parameters we are optimizing over. Due to the lack of easily exploitable structure in this optimization
problem, we turn to evolution strategies (ES) [20, 27, 9, 21] as a blackbox optimizer. The evolved
loss L can be viewed as a surrogate loss [24, 25] whose gradient is used to update the policy, which
is similar in spirit to policy gradients, lending the name “evolved policy gradients".

The learned loss offers several advantages compared to current RL methods. Since RL methods
optimize for short-term returns instead of accounting for the complete learning process, they may
get stuck in local minima and fail to explore the full search space. Prior works add auxiliary reward
terms that emphasize exploration [3, 10, 17, 32, 2, 18] and entropy loss terms [16, 23, 8, 14]. Using
ES to evolve the loss function allows us to optimize the true objective, namely the final trained
policy performance, rather than short-term returns, with the learned loss incentivizing the necessary
exploration to achieve this. Our method also improves on standard RL algorithms by allowing the
loss function to be adaptive to the environment and agent history, leading to faster learning and the
potential for learning without external rewards.

There has been a flurry of recent work on metalearning policies, e.g., [5, 33, 6, 13], and it is worth
asking why metalearn the loss as opposed to directly metalearning the policy? Our motivation is that
we expect loss functions to be the kind of object that may generalize very well across substantially
different tasks. This is certainly true of hand-engineered loss functions: a well-designed RL loss
function, such as that in [26], can be very generically applicable, finding use in problems ranging
from playing Atari games to controlling robots [26]. In Section 4.3, we find evidence that a loss
learned by EPG can train an agent to solve a task outside the distribution of tasks on which EPG was
trained. This generalization behavior differs qualitatively from MAML [6] and RL2 [5], methods that
directly metalearn policies.

Our contributions include the following: 1) Formulating a metalearning approach that learns a
differentiable loss function for RL agents, called EPG; 2) Optimizing the parameters of this loss
function via ES, overcoming the challenge that final returns are not explicit functions of the loss
parameters; 3) Designing a loss architecture that takes into account agent history via temporal
convolutions; 4) Demonstrating that EPG produces a learned loss that can train agents faster than
an off-the-shelf policy gradient method; 5) Showing that EPG’s learned loss can generalize to
out-of-distribution test time tasks, exhibiting qualitatively different behavior from other popular
metalearning algorithms. An implementation of EPG is available at anonymized.

2 Notation and Background

We model reinforcement learning [30] as a Markov decision process (MDP), defined as the tuple
M = (S,A, T,R, p0, γ), where S and A are the state and action space. The transition dynamic
T : S × A × S 7→ R+ determines the distribution of the next state st+1 given the current state st
and the action at. R : S × A 7→ R is the reward function and γ ∈ (0, 1) is a discount factor. p0
is the distribution of the initial state s0. An agent’s policy π : S 7→ A generates an action after
observing a state. An episode τ ∼ M with horizon H is a sequence (s0, a0, r0, . . . , sH , aH , rH)
of state, action, and reward at each timestep t. The discounted episodic return of τ is defined as
Rτ =

∑H
t=0 γ

trt, which depends on the initial state distribution p0, the agent’s policy π, and the
transition distribution T . The expected episodic return given agent’s policy π is Eπ[Rτ ]. The optimal
policy π∗ maximizes the expected episodic return π∗ = arg maxπ Eτ∼M,π[Rτ ]. In high-dimensional
reinforcement learning settings, the policy π is often parametrized using a deep neural network πθ
with parameters θ. The goal is to solve for θ∗ that attains the highest expected episodic return

θ∗ = arg max
θ

Eτ∼M,πθ
[Rτ ]. (1)

This objective can be optimized via policy gradient methods [34, 31] by stepping in the direction of
E[Rτ∇ log π(τ)]. This gradient can be transformed into a surrogate loss function [24, 25]

Lpg = E[Rτ log π(τ)] = E

[
Rτ

H∑
t=0

log π(at|st)

]
, (2)

such that the gradient of Lpg equals the policy gradient. This loss function is oftent transformed
through variance reduction techniques including actor-critic algorithms [11]. However, this procedure
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remains limited since it relies on a particular form of discounting returns, and taking a fixed gradient
step with respect to the policy. Our approach instead learns a loss. Thus, it may be able to discover
more effective surrogates for making fast progress toward the ultimate objective of maximizing final
returns.

3 Methodology

We aim to learn a loss function Lφ that outperforms the usual policy gradient surrogate loss [24]. The
learned loss function consists of temporal convolutions over the agent’s recent history. In addition to
internalizing environment rewards, this loss could, in principle, have several other positive effects. For
example, by examining the agent’s history, the loss could incentivize desirable extended behaviors,
such as exploration. Further, the loss could perform a form of system identification, inferring
environment parameters and adapting how it guides the agent as a function of these parameters (e.g.,
by adjusting the effective learning rate of the agent). The loss function parameters φ are evolved
through ES and the loss trains an agent’s policy πθ in an on-policy fashion via stochastic gradient
descent.

3.1 Metalearning Objective

We assume access to a distribution p(M) over MDPs. Given a sampled MDPM, the inner loop
optimization problem is to minimize the loss Lφ with respect to the agent’s policy πθ:

θ∗ = arg min
θ

Eτ∼M,πθ
[Lφ(πθ, τ)]. (3)

Note that this is similar to the usual RL objectives (Eqs. (1) (2)), except that we are optimizing a
learned loss Lφ rather than directly optimizing the expected episodic return EM,πθ

[Rτ ] or other
surrogate losses. The outer loop objective is to learn Lφ such that an agent’s policy πθ∗ trained with
the loss function achieves high expected returns in the MDP distribution:

φ∗ = arg max
φ

EM∼p(M)Eτ∼M,πθ∗ [Rτ ]. (4)

3.2 Algorithm

The final episodic return Rτ of a trained policy πθ∗ cannot be represented as an explicit function
of the loss function Lφ. Thus we cannot use gradient-based methods to directly solve Eq. (4). Our
approach, summarized in Algorithm 1, relies on evolution strategies (ES) to optimize the loss function
in the outer loop.

As described by Salimans et al. [21], ES computes the gradient of a function F (φ) according to
∇φEε∼N (0,I)F (φ + σε) = 1

σEε∼N (0,I)F (φ + σε)ε. Similar formulations also appear in prior
works including [29, 28, 15]. In our case, F (φ) = EM∼p(M)Eτ∼M,πθ∗ [Rτ ] (Eq. (4)). Note that the
dependence on φ comes through θ∗ (Eq. (3)).

Step by step, the algorithm works as follows. At the start of each epoch in the outer loop, for W
inner-loop workers, we generate V standard multivariate normal vectors εv ∈ N (0, I) with the same
dimension as the loss function parameter φ, assigned to V sets of W/V workers. As such, for the
w-th worker, the outer loop assigns the dwV/W e-th perturbed loss function Lw = Lφ+σεvwhere v =
dwV/W e with perturbed parameters φ + σεv and σ as the standard deviation.

Given a loss function Lw, w ∈ {1, . . . ,W}, from the outer loop, each inner-loop worker w samples
a random MDP from the task distribution,Mw ∼ p(M). The worker then trains a policy πθ inMw

over U steps of experience. Whenever a termination signal is reached, the environment resets with
state s0 sampled from the initial state distribution p0(Mw). Every M steps the policy is updated
through SGD on the loss function Lw, using minibatches sampled from the steps t−M, . . . , t:

θ ← θ − δin · ∇θLw
(
πθ, τt−M,...,t

)
. (5)
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Algorithm 1: Evolved Policy Gradients (EPG)
1 [Outer Loop] for epoch e = 1, . . . , E do
2 Sample εv ∼ N (0, I) and calculate the loss parameter φ + σεv for v = 1, . . . , V
3 Each worker w = 1, . . . ,W gets assigned noise vector dwV/W e as εw
4 for each worker w = 1, . . . ,W do
5 Sample MDPMw ∼ p(M)
6 Initialize buffer with N zero tuples
7 Initialize policy parameter θ randomly
8 [Inner Loop] for step t = 1, . . . , U do
9 Sample initial state st ∼ p0 ifMw needs to be reset

10 Sample action at ∼ πθ(·|st)
11 Take action at inMw and receive rt, st+1, and termination flag dt
12 Add tuple (st, at, rt, dt) to buffer
13 if t mod M = 0 then
14 With loss parameter φ + σεw, calculate losses Li for steps i = t−M, . . . , t

using buffer tuples i−N, . . . , i
15 Sample minibatches mb from last M steps shuffled, compute Lmb =

∑
j∈mb Lj ,

and update the policy parameter θ and memory parameter (Eq. (5))

16 InMw, using trained policy πθ , sample several trajectories and compute mean return Rw
17 Update the loss parameter φ (Eq. (6))
18 Output: Loss Lφ that trains π from scratch according to inner loop scheme, on MDPs ∼ p(M)

At the end of the inner-loop training, each worker returns the final return Rw1 to the outer loop.
The outer-loop aggregates the final returns {Rw}Ww=1 from all workers and updates the loss function
parameter φ as follows:

φ← φ + δout ·
1

V σ

∑V

v=1
F (φ + σεv)εv, (6)

where F (φ + σεv) =
R(v−1)∗W/V +1+···+Rv∗W/V

W/V . As a result, each perturbed loss function Lv is
evaluated on W/V randomly sampled MDPs from the task distribution using the final returns. This
achieves variance reduction by preventing the outer-loop ES update from promoting loss functions that
are assigned to MDPs that consistently generate higher returns. Note that the actual implementation
calculates each loss function’s relative rank for the ES update. Algorithm 1 outputs a learned loss
function Lφ after E epochs of ES updates.

At test time, we evaluate the learned loss function Lφ produced by Algorithm 1 on a test MDPM
by training a policy from scratch. The test-time training schedule is the same as the inner loop of
Algorithm 1 (it is described in full in the supplementary materials).

3.3 Architecture

The agent is parametrized using an MLP policy with observation space S and action space A. The
loss has a memory unit to assist learning in the inner loop. This memory unit is a single-layer neural
network to which an invariable input vector of ones is fed. As such, it is essentially a layer of bias
terms. Since this network has a constant input vector, we can view its weights as a very simple form
of memory to which the loss can write via emitting the right gradient signals. An experience buffer
stores the agent’s N most recent experience steps, in the form of a list of tuples (st, at, rt, dt), with
dt the trajectory termination flag. Since this buffer is limited in the number of steps it stores, the
memory unit might allow the loss function to store information over a longer period of time.

The loss function Lφ consists of temporal convolutional layers which generate a context vector
fcontext, and dense layers, which output the loss. The architecture is depicted in Figure 2.

1More specifically, the average return over 3 sampled trajectories using the final policy for worker w.
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Figure 2: Architecture of a loss computed for
timestep t within a batch of M sequential samples
(from t −M to t), using temporal convolutions
over a buffer of size N (from t − N to t), with
M ≤ N : dense net on the bottom is the policy
π(s), taking as input the observations (orange),
while outputting action probabilities (green). The
green block on the top represents the loss output.
Gray blocks are evolved, yellow blocks are updated
through SGD.

At step t, the dense layers output the loss Lt by
taking a batch of M sequential samples
{si, ai, di,mem, fcontext, πθ(·|si)}ti=t−M , (7)

where M < N and we augment each tran-
sition with the memory output mem, a con-
text vector fcontext generated from the loss’s
temporal convolutional layers, and the pol-
icy distribution πθ(·|si). In continuous action
space, πθ is a Gaussian policy, i.e., πθ(·|si) =
N (·;µ(si;θ0),Σ), with µ(si;θ0) the MLP out-
put and Σ a learnable parameter vector. The pol-
icy parameter vector is defined as θ = [θ0,Σ].

To generate the context vector, we first augment
each transition in the buffer with the output of
the memory unit mem and the policy distribu-
tion πθ(·|si) to obtain a set

{si, ai, di,mem, πθ(·|si)}ti=t−N . (8)
We stack these items sequentially into a matrix
and the temporal convolutional layers take it
as input and output the context vector fcontext.
The memory unit’s parameters are updated via
gradient descent at each inner-loop update (Eq.
(5)).

Note that both the temporal convolution layers
and the dense layers do not observe the envi-
ronment rewards directly. However, in cases
where the reward cannot be fully inferred from
the environment, such as the DirectionalHopper
environment we will examine in Section 4.1, we
add rewards ri to the set of inputs in Eqs. (7)
and (8). In fact, any information that can be
obtained from the environment could be added

as an input to the loss function, e.g., exploration signals, the current timestep number, etc, and we
leave further such extensions as future work.

To bootstrap the learning process, we add to Lφ a guidance policy gradient signal Lpg (in practice,
we use the surrogate loss from PPO [26]), making the total loss

L̂φ = (1− α)Lφ + αLpg. (9)
We anneal α from 1 to 0 over a finite number of outer-loop epochs. As such, learning is first derived
mostly from the well-structured Lpg, while over time Lφ takes over and drives learning completely
after α has been annealed to 0.

4 Experiments

We apply our method to several randomized continuous control MuJoCo environments [1, 19, 4],
namely RandomHopper and RandomWalker (with randomized gravity, friction, body mass, and
link thickness), RandomReacher (with randomized link lengths), DirectionalHopper and Direction-
alHalfCheetah (with randomized forward/backward reward function), GoalAnt (reward function
based on the randomized target location), and Fetch (randomized target location). We describe these
environments in detail in the supplementary materials. These environments are chosen because they
require the agent to identify a randomly sampled environment at test time via exploratory behavior.
Examples of the randomized Hopper environments are shown in Figure 9. The plots in this section
show the mean value of 20 test-time training curves as a solid line, while the shaded area represents
the interquartile range. The dotted lines plot 5 randomly sampled curves.
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Figure 3: RandomHopper test-
time training over 128 (pol-
icy updates) ×64 (update fre-
quency) = 8196 timesteps:
PPO vs no-reward EPG

Figure 4: RandomWalker test-
time training over 256 (pol-
icy updates) ×128 (update fre-
quency) = 32768 timesteps:
PPO vs no-reward EPG

Figure 5: RandomReacher test-
time training over 512 (pol-
icy updates) ×128 (update fre-
quency) = 65536 timesteps: PG
vs no-reward EPG.

4.1 Performance

We compare metatest-time learning performance, using the EPG loss function, against an off-the-shelf
policy gradient method, PPO [26]. Figures 3, 4, 5, and 6 show learning curves for these two methods
on the RandomHopper, RandomWalker, RandomReacher, and Fetch environments respectively at
test time. The plots show the episodic return w.r.t. the number of environment steps taken so far. In
all experiments, EPG agents learn more quickly and obtain higher returns compared to PPO agents.

Figure 6: GoalAnt (top) and
Fetch (bottom) environment
learning over 512 and 256
(policy updates) ×32 (update
frequency): PPO vs EPG (no
reward for Fetch)

In these experiments, the PPO agent learns by observing reward
signals whereas the EPG agent does not observe rewards (note that
at test time, α in Eq. (9) equals 0). Observing rewards is not needed
in EPG at metatest time, since any piece of information the agent
encounters forms an input to the EPG loss function. As long as the
agent can identify which task to solve within the distribution, it does
not matter whether this identification is done through observations
or rewards. This setting demonstrates the potential to use EPG when
rewards are only available at metatraining time, for example, if a
system were trained in simulation but deployed in the real world
where reward signals are hard to measure.

Figures 7, 8, and 6 show experiments in which a signaling flag is
required to identify the environment. Generally, this is done through
a reward function or an observation flag, which is why EPG takes
the reward as input in the case where the state space is partially-
observed. Similarly to the previous experiments, EPG significantly
outperforms PPO on the task distribution it is metatrained on. Specif-
ically, in Figure 8, we compare EPG with both MAML (data from
[6]) and RL2 [5], finding that all three methods obtain similarly high
performance after 8000 timesteps of experience. When comparing
EPG to RL2 (a method that learns a recurrent policy that does not
reset the internal state upon trajectory resets), we see that RL2 solves
the DirectionalHalfCheetah task almost instantly through system
identification. By learning both the algorithm and the policy initial-
ization simultaneously, it is able to significantly outperform both

MAML and EPG. However, this comes at the cost of generalization power, as we will discuss in
Section 4.3.

4.2 Learning exploratory behavior

Without additional exploratory incentives, PG methods lead to suboptimal policies. To understand
whether EPG is able to train agents that explore, we test our method and PPO on the DirectionalHopper
and GoalAnt environments. In DirectionalHopper, each sampled Hopper environment either rewards
the agent for forward or backward hopping. Note that without observing the reward, the agent cannot
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Figure 7: DirectionalHopper environment: each Hopper environ-
ment randomly decides whether to reward forward (left) or back-
ward (right) hopping. In the right plot, we can see exploratory
behavior, indicated by the negative spikes in the reward curve,
where the agent first tries out walking forwards before realizing
that backwards gives higher rewards.

Figure 8: DirectionalHalfChee-
tah environment from Finn et
al. [6] (Fig. 5). Blue dots show
0, 1, and 2 gradient steps of
MAML after metalearning a
policy initialization.

Figure 9: Example of learning to hop backward from a
random policy in a DirectionalHopper environment. Left to
right: sampled trajectories as learning progresses.

Figure 10: Sampled trajectories at test-
time training on two GoalAnt environ-
ments: various directions are explored.

infer whether the Hopper environment desires forward or backward hopping. Thus we augment the
environment reward to the input batches of the loss function in this setting.

Figure 7 shows learning curves of both PPO agents and agents trained with the learned loss in the
DirectionalHopper environment. The learning curves give indication that the learned loss is able
to train agents that exhibit exploratory behavior. We see that in most instances, PPO agents stagnate
in learning, while agents trained with our learned loss manage to explore both forward and backward
hopping and eventually hop in the correct direction. Figure 7 (right) demonstrates the qualitative
behavior of our agent during learning and Figure 9 visualizes the exploratory behavior. We see
that the hopper first explores one hopping direction before learning to hop backwards. The GoalAnt
environment randomizes the location of the goal. Figure 10 demonstrates the exploratory behavior
of a learning ant trained by EPG. The ant first explores in various directions, including the opposite
direction of the target location. However, it quickly figures out in which quadrant to explore, before
it fully learns the correct direction to walk in.

4.3 Generalization to out-of-distribution tasks

We evaluate generalization to out-of-distribution task learning on the GoalAnt environment. During
metatraining, goals are randomly sampled on the positive x-axis (ant walking to the right) and at test
time, we sample goals from the negative x-axis (ant walking to the left). Achieving generalization
to the left side is not trivial, since it may be easy for a metalearner to overfit to the task metatraining
distribution. Figure 11 (a) illustrates this generalization task. We compare the performance of EPG
against MAML [6] and RL2 [5]. Since PPO is not metatrained, there is no difference between both
directions. Therefore, the performance of PPO is the same as shown in Figure 6.
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