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Abstract

We consider online linear regression: at each round, an adversary reveals a covariate
vector, the learner predicts a real value, the adversary reveals a label, and the learner
suffers the squared prediction error. The aim is to minimize the difference between
the cumulative loss and that of the linear predictor that is best in hindsight. Previous
work demonstrated that the minimax optimal strategy is easy to compute recursively
from the end of the game; this requires the entire sequence of covariate vectors in
advance. We show that, once provided with a measure of the scale of the problem,
we can invert the recursion and play the minimax strategy without knowing the
future covariates. Further, we show that this forward recursion remains optimal even
against adaptively chosen labels and covariates, provided that the adversary adheres
to a set of constraints that prevent misrepresentation of the scale of the problem.
This strategy is horizon-independent in that the regret and minimax strategies
depend on the size of the constraint set and not on the time-horizon, and hence it
incurs no more regret than the optimal strategy that knows in advance the number
of rounds of the game. We also provide an interpretation of the minimax algorithm
as a follow-the-regularized-leader strategy with a data-dependent regularizer and
obtain an explicit expression for the minimax regret.

1 Introduction

Linear regression is a fundamental prediction problem in machine learning and statistics. In this
paper, we study a sequential version: on round t, the adversary chooses and reveals a covariate vector
xt ∈ Rd, the learner makes a real-valued prediction ŷt, the adversary chooses and reveals the true
outcome yt ∈ R, and finally the learner is penalized by the square loss, (ŷt − yt)2.

Since it is hopeless to guarantee a small loss (the adversary can always cause constant loss per round),
we instead aim to guarantee that we are able to predict almost as well as the best fixed linear predictor
in hindsight. Letting xts and yts denote xs, . . . ,xt and ys, . . . , yt, respectively, define the regret of a
strategy that predicts ŷT1 as

RT
(
ŷT1 ,x

T
1 , y

T
1

)
:=

T∑
t=1

(ŷt − yt)2 − min
θ∈Rd

T∑
t=1

(θ>xt − yt)2.
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A strategy s :
⋃
t≥1(Rd×R)t−1×Rd → R, is a map from observations to predictions, and we define

RT
(
s,xT1 , y

T
1

)
:= RT

(
ŷT1 ,x

T
1 , y

T
1

)
where ŷt = s(x1, y1, . . . ,xt−1, yt−1,xt). Our goal is to find

a strategy that guarantees low regret for all data sequences. In particular, this paper is concerned with
the minimax strategy s∗, which is the strategy that minimizes the worst case regret over all possible
covariate and outcome sequences in some constraint set, i.e. s∗ satisfies

max
xT

1 ,y
T
1

RT
(
s∗,xT1 , y

T
1

)
= min

s
max
xT

1 ,y
T
1

RT
(
s,xT1 , y

T
1

)
.

In general, computing minimax strategies is computationally intractable because the optimal predic-
tion ŷt depends on the complete history (x1, y1, . . . ,xt−1, yt−1,xt), and the dependence might be
a rather arbitrary function of this enormous space of histories. So it is surprising that, in the case
of fixed-design linear regression (where the strategy knows the covariate sequence in advance), the
minimax strategy can be efficiently computed [Bartlett et al., 2015].

This paper builds on results from Bartlett et al. [2015], which studied fixed-design online linear
regression, where the game length T and covariates xT1 := x1, . . . ,xT are known to the learner a
priori. Under constraints on the adversarial labels yT1 , the value function and minimax strategy were
calculable in closed form using backwards induction. The resulting minimax strategy

ŷt+1 = x>t+1Pt+1

t∑
s=1

ysxs, (MMS)

is a simple, linear predictor with coefficient matrices defined by

PT =

( T∑
t=1

xtx
>
t

)†
and recursion Pt = Pt+1 + Pt+1xt+1x

>
t+1Pt+1. (1)

The ŷt is a function of the whole sequence xT1 , and thus an extension to online-design seems difficult.

Given: covariate constraints X and label con-
straints Y({xt})
For t = 1, 2, . . . ,

• Adversary chooses xt s.t. xt1 ∈ X
• Learner predicts ŷt
• Adversary may end the game
• Adversary reveals yt s.t. yt1 ∈ Y(xT1 )

• Learner incurs loss (ŷt − yt)2

• The game ends if no xt+1 exists such
that xt+1

1 ∈ X

Figure 1: Adversarial Covariates Protocol

Our contributions This paper extends the fixed
design setting to adversarial design where neither
the covariates nor the length of the game are fixed
a priori. We use {xt} and {yt} to denote arbi-
trary length sequences of covariates and labels,
respectively. We allow the adversary to play any
covariate sequence in some constraint set X and
labels in some set Y({xt}) (which may depend
on the covariates).

In particular, we identify a family X ,Y parameter-
ized by a positive-definite matrix Σ, representing
the size of future covariates, and a scalar γ0, rep-
resenting the size of the future labels, and present
a strategy that is minimax optimal against all ad-
versarial sequences in this family. The algorithm
needs only know Σ, and the guarantee is horizon-independent in the sense that the family does not
constrain the length of the covariate sequence and includes covariate sequences of arbitrary length for
any Σ, γ0 pair.

The protocol of the general, horizon-independent setting is outlined in Figure 1. We derive the
minimax strategy and show that it is optimal in the following way.
Definition 1. A strategy s∗ is horizon-independent minimax optimal for some class X of covariate
sequences and some class Y({xt}) of label sequences, possibly depending on {xt} ∈ X , if

sup
T

(
sup

xT
1 ∈X , yT1 ∈Y(xT

1 )

RT
(
s∗,xT1 , y

T
1

)
−min

s
sup

xT
1 ∈X , yT1 ∈Y(xT

1 )

RT
(
s,xT1 , y

T
1

))
= 0.

We require s∗ to have regret no larger than even a strategy that knows T .

In other words, we establish a more natural measure of game length than the number of rounds. The
covariate constraints on {xt} ensure that the adversary respects the scale constraint Σ so that the
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learner is not led to under-regularize or over-regularize. The minimax strategy is efficient and is
simultaneously minimax optimal against all covariate sequences corresponding to Σ.

We motivate our constraint set by showing that every condition is necessary, and we also cast the
minimax strategy as follow the regularized leader strategy with a data-dependent regularizer. Finally,
we provide a general regret upper bound.

Outline We begin with a review of how backwards induction is used to derive the fixed-design
minimax algorithm (MMS) in Section 2. By inverting the recursion, we show in Section 3 how to
calculate (MMS) given only P0, and thus we have the minimax strategy for any covariate sequence
that perfectly agrees with the given P0.

Section 4 greatly expands the scope of our algorithm by deriving weaker conditions on the adversary
and proves that, under these conditions, the same minimax strategy is horizon-independent minimax
optimal. We argue that these conditions are necessary. We then interpret the minimax strategy as a
follow the regularized leader with a specific, data-dependent regularizer in Section 5.

Related Work While linear regression has a long history in statistics and optimization, its online
sibling is much more recent, starting with the work of Foster [1991], which considered binary labels
and `1-constrained parameters θ. He proved an O(d log(dT )) regret bound for an `2-regularized
follow-the-leader strategy. Cesa-Bianchi et al. [1996] considered `2-constrained parameters and gave
O(
√
T ) regret bounds for a gradient descent algorithm with `2 regularization. Kivinen and Warmuth

[1997] showed that an Exponentiated Gradient algorithm with relative entropy gives the same regret
without the need for a constraint on the parameters. Vovk [1998] applied the Aggregating Algorithm
[Vovk, 1990] to continuously many experts and arrived at a scale free algorithm by using the inverse
second moment matrix of past and current covariates. Forster [1999] and Azoury and Warmuth
[2001] showed that this algorithm is last step minimax and achieves an O(log T ) scale-dependent
regret bound. (See also the work of Moroshko and Crammer [2014] on last-step minimax.)

Takimoto and Warmuth [2000] obtained the minimax strategy for prediction in Euclidean space with
squared loss. This was extended to more general losses in [Koolen et al., 2014] and to tracking
problems in [Koolen et al., 2015]. Finally, Bartlett et al. [2015] obtained the minimax strategy for
fixed-design linear regression. We present this strategy in the next section, because we build on these
results. In these papers, the minimax analysis provides a natural, data-dependent regularization, in
contrast to the follow-the-leader methods described above. We make this comparison explicit in
Section 5, by calculating the implied regularization.

2 Fixed Design Linear Regression

We begin by summarizing the main results of Bartlett et al. [2015]. Recall that in the fixed design
setting, the game length T and covariates xT1 are fixed and known to both players. Define the summary
statistics st :=

∑t
s=1 ysxs, σ

2
t =

∑t
s=1 y

2
t , and Πt =

∑t
s=1 xsx

>
s . The minimax strategy can be

computed by solving the offline problem minθ
∑T
t=1(x>t θ − yt)2 =

∑T
t=1 y

2
t − s>T Π†TsT , where

M † is the pseudo-inverse of matrix M . The optimal actions ŷt and yt are computed as a function of
the state st−1 and covariates xT1 by solving the backward induction

V
(
st, σ

2
t , t,x

T
1

)
:= min

ŷt+1

max
yt+1

(
(ŷt+1 − yt+1)

2
+ V

(
st + yt+1xt+1, σ

2
t + y2

t+1, t+ 1,xT1
))

with base case V
(
sT , σ

2
T , T,x

T
1

)
:= −minθ∈Rd

∑T
t=1

(
θ>xt − yt

)2
. The arguments of V include

xT1 to emphasize the fixed-design setting. Performing the backwards induction generates plays ŷT1
and yT1 that witness the value of the game,

min
ŷ1

max
y1
· · ·min

ŷT
max
yT

T∑
t=1

(ŷt − yt)2 − min
w∈Rd

T∑
t=1

(w>xt − yt)2,

which is the minimum guaranteeable regret against all data sequences. The resulting minimax strategy
is precisely the linear predictor ŷt+1 = x>t+1Pt+1st, ((MMS)) with coefficient matrices defined by
the recursion (1). Note that Pt is a function of every covariate xT1 . The minimax strategy is similar
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to follow-the-leader, which would predicts with Π†t in place of Pt; however, Pt is a shrunken version
of Π†t that takes future covariances into account.

The main result of Bartlett et al. [2015] is the minimax optimality of (MMS) for the following classes.
For some fixed sequence of positive label budgets B1, . . . , BT > 0, define

1. Label constraints on yt: L(BT1 ) := {yT1 : |yt| ≤ Bt∀t = 1, . . . , T}
2. Box constraints on xt: B(BT1 ) :=

{
xT1 : Bt ≥

∑t−1
s=1

∣∣x>t Ptxs∣∣Bs for 2 ≤ t
}
.

3. Ellipsoidal constraints: E(xT1 , R) :=
{
yT1 :

∑T
t=1 y

2
tx
>
t Ptxt ≤ R

}
.

Theorem 1. [Bartlett et al., 2015, Theorems 2 and 10] For each xT1 , the corresponding strategy
(MMS) is minimax optimal with respect to B(BT1 ) if yT1 ∈ L(BT1 ) and with respect to E(xT1 , R), for
any Bt > 0 sequence and any R > 0, in the following sense:

(1) If xT1 ∈ B(BT1 ), then

sup
yT1 ∈L(BT

1 )

RT ((MMS),xT1 , y
T
1 ) = min

s
sup

yT1 ∈L(BT
1 )

RT (s,xT1 , y
T
1 ) =

T∑
t=1

B2
tx
>
t Ptxt,

(2) sup
yT1 ∈E(xT

1 ,R)

RT ((MMS),xT1 , y
T
1 ) = min

s
sup

yT1 ∈E(xT
1 ,R)

RT (s,xT1 , y
T
1 ) = R.

3 The Forward Algorithm

The previous section described the fixed-design minimax strategy and established sufficient conditions
for its optimality. Unfortunately, Pt is recursively defined as a function of the entire xT1 sequence.
In this section, we show that it is possible to remove the fixed-design and known-game-length
requirement if we limit the adversary to play sequences that follow the Adversarial Covariate
conditions. Letting X∞ =

⋃
T>0

(
Rd
)T

denote the set of covariate sequences of finite length, define

A(Σ) :=
{
xT1 ∈ X∞ : for P0, . . . ,PT defined by (1), P †0 � Σ

}
, and

A(Σ) :=
{
xT1 ∈ X∞ : for P0, . . . ,PT defined by (1), P †0 = Σ

}
; (2)

that is, xT1 ∈ A(Σ) if the Pt computed by applying (1) to the sequence xT1 results in P †0 � Σ.

The key insight of this section is that it is possible to invert the Pt recursion: we can compute Pt
from Pt−1 and xt. Hence, if we are given P0, then we can compute every Pt online. For some initial
condition Σ, define the forward recursion with base case P0 = Σ† and induction step

Pt := Pt−1 −
at
b2t
Pt−1xtx

>
t Pt−1, where b2t := x>t Pt−1xt, at :=

√
4b2t + 1− 1√
4b2t + 1 + 1

. (3)

The prediction matrix Pt is a function of Σ and xt1 only. For the rest of the paper, we will define
(MMS) with respect to the forward recursion, i.e. ŷt := x>t Ptst−1, where Pt is defined by recursion
(3). The calculation of ŷt only requires knowledge of Σ, xt1, and yt−1

1 , all of which are available to the
learner when choosing ŷt. The algorithm needs O(d2) memory and at each round the computational
complexity is O(d2). It is essential that the two recursions are equivalent, which is guaranteed by the
following lemma.

Lemma 1. Let Σ � 0 be a positive semidefinite matrix. For any covariate sequence xT1 ∈ A(Σ),
the Pt matrices defined by the backwards recursion (1) applied to xT1 are identical to the Pt matrices
defined by the forward recursion (3) with base case P0 = Σ† and updates given by xT1 .

Proof. Let P ′t be defined by the forwards recursion starting from P0 = Σ† and let Pt be defined by
the backwards recursion (1). Our goal is to show that Pt = P ′t for all t. The base case P0 = P ′0
is a simple consequence [Bartlett et al., 2015, Lemma 11], which uses repeated applications on
Sherman-Morrison to show that

P †t = Πt +

T∑
s=t+1

x>s Psxs
1 + x>s Psxs

xsx
>
s . (4)
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Now, assuming the induction hypothesis P ′t−1 = Pt−1, we can evaluate

P ′t = Pt−1 −
at
b2t
Pt−1xtx

>
t Pt−1

= Pt + Ptxtx
>
t Pt −

at
b2t

(
Pt + Ptxtx

>
t Pt

)
xtx

>
t

(
Pt + Ptxtx

>
t Pt

)
= Pt + Ptxt

(
1− at

b2t

(
1 + 2x>t Ptxt +

(
x>t Ptxt

)2))
x>t Pt (5)

By definition, we have b2t = x>t Pt−1xt = x>t Ptxt +
(
x>t Ptxt

)2
, which we can invert to find that

x>t Ptxt = 1
2

(√
4b2t + 1− 1

)
. Plugging this is, the term in the parenthesis in (5) is

1− at
b2t

(
1 + 2x>t Ptxt +

(
x>t Ptxt

)2)
= 1− at

b2t

(
1 +

(√
4b2t + 1− 1

)
+

1

4

(√
4b2t + 1− 1

)2
)

= 1− at
b2t

(
1

2

√
4b2t + 1 +

1

2
+ b2t

)
=

2√
4b2t + 1 + 1

− 1

2b2t

(√
4b2t + 1− 1

)

=
4b2t −

(√
4b2t + 1− 1

)(√
4b2t + 1 + 1

)
2b2t

(√
4b2t + 1 + 1

) = 0,

implying that P ′t = Pt, as desired.

Our first result is that this algorithm is actually minimax optimal if we constrain the adversary to play
in A(Σ). Another interpretation is that Σ encodes all the necessary scale information the learner
needs to respond optimally. That is, (MMS) performs as well as the best strategy that sees the covariate
sequence in advance. In particular, knowledge of Σ, not T , is necessary for the learner.
Theorem 2. For all positive semidefinite Σ, label bounds B1, B2, . . . > 0, and constants b > 0
and R > 0, the minimax strategy (MMS) using the forward recursion (3) starting from P0 = Σ† is
horizon-independent minimax optimal, i.e.

sup
T

sup
xT

1 ∈X

(
sup

yT1 ∈Y(xT
1 )

RT (s∗,xT1 , y
T
1 )−min

s
sup

yT1 ∈Y(xT
1 )

RT (s,xT1 , y
T
1 )

)
= 0

for
(
X ,Y(xT1 )

)
equal to either (A(Σ), E(xT1 , R)) or (B(BT1 ) ∩ A(Σ),L(BT1 )).

Proof of Theorem 2. Since xT1 ∈ A(Σ), Lemma 1 implies that the Pt matrices from the forwards
and backwards recursions are equivalent, and therefore (MMS) corresponds to the minimax strategy
for the fixed-design game with P †0 = Σ. The can then apply Theorem 1, part (1), which yields

sup
yT1 ∈B(BT

1 )

RT (s∗,xT1 , y
T
1 )−min

s
sup

yT1 ∈B(BT
1 )

RT (s,xT1 , y
T
1 ) = 0.

Since this holds for all xT1 , we actually get the stronger result

sup
T

sup
xT

1 ∈A(BT
1 )∩A(Σ)

(
sup

yT1 ∈B(BT
1 )

RT (s∗,xT1 , y
T
1 )−min

s
sup

yT1 ∈B(BT
1 )

RT (s,xT1 , y
T
1 )

)
= 0.

Identical reasoning extends part (2) of Theorem 1 to the adversarial covariate context.

The adversarial covariate conditions are defined for entire xT1 sequences, but there is an online
characterization, derived from the following lemma.
Lemma 2. Consider any t ≥ 0, x1, . . . ,xt, and symmetric matrix P � 0. We have that P † � Πt

if and only if, for any T ≥ t+ rank
(
P † −Πt

)
, there is a continuation of the covariate sequence,

xt+1, . . . ,xT , such that setting Pt = P and defining Pt+1, . . . ,PT by the forward recursion (3)
gives P †T = ΠT .
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A stronger version with proof is presented in the Appendix as Theorem 6 and explicitly derives
conditions on xt+1 that ensure P † � Πt.

In words, a sequence of covariates xt1 is the prefix of some xT1 ∈ A(Σ) if P †s � Πs for all s ≤ t,
where Ps corresponds to the forward recursion (3) defined by intuition condition P0 = Σ† and
covariates xt1. Hence, it is equivalent to constrain the adversary to play xt satisfying this condition
at every round, and we do not require the adversary to fix the covariate sequence in advance; it is
equivalent to define

A(Σ) =
{
xT1 ∈ X∞ : P †0 = Σ and P †t � Πt ∀t ≥ 1

}
, and (6)

A(Σ) =
{
xT1 ∈ X∞ : P †0 = Σ,P †t � Πt ∀t ≥ 1, and P †T = ΠT

}
. (7)

4 Expanding the Minimax Conditions

The strategy (MMS) is minimax optimal for any covariate sequence xT1 ∈ A(Σ) if the adversary
plays covariates that meet the Σ constraint with equality, which is quite restrictive. In this section, we
identify a much broader set of constraints on the adversary’s actions where (MMS) remains the best
learner response. These conditions allow for adversarial design; the data may be chosen in response
to the learner’s actions.

A natural relaxation is to remove the equality constraints; this results in a set of constraints on the
adversary where the labels {yt} are in L({Bt}) := {yt : |yt| ≤ Bt∀t ≥ 1}, and the covariates {xt}
are in A (Σ) ∩ B (Σ), where B (Σ) =

{
{xt} : Bt ≥

∑t−1
s=1

∣∣x>t Ptxs∣∣ ∀t ≥ 1
}

.

The B(Σ) condition is necessary for an efficient algorithm [Bartlett et al., 2015], and without the
A(Σ) condition, the adversary could choose xt to be a scaled version of st−1 and yt = θ∗t−1xt,
where θ∗t−1 is the best least squares predictor of xt−1

t and yt−1
1 . The comparator will never suffer

more regret, the algorithm will suffer some regret, and we can scale xt such that the B(Σ) conditions
are satisfied. To summarize, without the A constraint, the adversary can cause arbitrary regret.
However, the A and B constraints are not sufficient to guarantee a solvable game:
Lemma 3. Fix any Σ and any {Bt} with Bt ≥ b > 0 for all t. Then, for any M > 0, there exists
xT1 ∈ A(Σ) ∩ B(Σ) and yT1 ∈ L(BT1 ) such that the minimax regret is larger than M .

A covariate budget is not sufficient for a minimax algorithm; it is not even clear how to define minimax
when the regrets are not bounded. Hence, we will introduce continuation constraints (the name will
become clear soon). Let γ0 > 0 be some initial label budget and define γt = γt−1 − B2

tx
>
t Ptxt,

with Pt defined by the forward recursion (3). Let B∞(Bt1) := {ξ ∈ Rt : |ξi| ≤ Bi, i = 1, . . . , t} be
the hypercube with sides of length B1, . . . , Bt and Xt be the matrix with columns x1, . . . ,xt. For a
given covariate budget Σ and label budget γ0, define the continuation condition

C (Σ, γ0) :=
{
xT1 : γt ≥ ξ>X>t

(
Π†t − Pt

)
Xtξ ∀ξ ∈ B∞(Bt) and t = 1, . . . , T

}
, (8)

which is equivalent to requiring that s>t
(

Π†t − Pt

)
st ≤ γt for all possible st.

The rest of this section proves the main result of this paper: if the adversary plays in ABC(Σ, γ0) :=
A(Σ) ∩ B(Σ) ∩ C(Σ, γ0), then (MMS) is minimax optimal.
Theorem 3. Consider the two player game defined in Figure 1. For any {Bt} > 0, Σ � 0 and
γ0 ≥ 0, the player strategy (MMS) has minimax regret γ0 and is horizon-independent minimax
optimal for xT1 ∈ X = ABC(Σ, γ0) and yT1 ∈ Y = L(Bt). That is,

sup
T

(
sup

xT
1 ∈X ,yT1 ∈Y

RT ((MMS),xT1 , y
T
1 )−min

s
sup

xT
1 ∈X ,yT1 ∈Y

RT (s,xT1 , y
T
1 )

)
= 0.

We will prove Theorem 3 by first considering adversarial strategies under A(Σ) with a fixed game
length. We show that, somewhat counterintuitively, the adversary may cause more regret by not
using the entire Σ budget. Then, we show that the C condition eliminates these troublesome cases
and the adversary exhausts the budget; therefore, the adversary plays xT1 ∈ A(Σ) which implies
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that that (MMS) is minimax optimal by results of the previous section. Finally, we note that all
the previous arguments apply uniformly across T , and since (MMS) is ignorant of T , it must be
horizon-independent minimax optimal. The Σ constraint, not the game length, seems to be the correct
notion of game size.

4.1 Limiting T

Consider a fixed T > 0 and defineAT (Σ) :=
{
xT1 ∈

(
Rd
)T

: P †0 = Σ and P †t � Πt ∀1 ≤ t ≤ T
}

,
the restriction of A(Σ) to sequences of length T . This goal of this section is to show i) that it is
possible for the adversary to cause more regret by not using up the covariance budget, i.e. P †T � ΠT ,
and ii) that the C conditions are sufficient to stop this.

We cannot calculate the minimax solution of AT (Σ) directly. Section G in the appendix explicitly
evaluates the first backwards induction step; it is quite complicated and has no closed form solution,
and this suggests that efficient backwards induction is unlikely. Instead, we will study the related
fixed-design early-stopping game. For some fixed xT1 , the game protocol is: at round t, the learner
predicts ŷt, the adversary chooses et ∈ {0, 1} and yt ∈ L(BT1 ). If et = 1, the learner incurs loss
(ŷt − yt)2 and the game continues, but if et = 0, the game ends. Intuitively, the adversary may be
able to cause more regret because the learner is regularizing for a covariance budget corresponding to
xT1 , and therefore ending the game early causes the learner to over-regularize.

We will derive C as a condition where the adversary always continues to T . In turn, this implies
that the adversary will use up the Σ budget in the AT game: any xT1 with remaining Σ budget has
a continuation xT+k

1 ∈ A(Σ) by Lemma 2, and the C condition implies that the adversary will
continue until T + k and use up the budget. We will make this argument formal.

We begin by defining an incremental version of regret. Define ∆∗t := minθ∈Rd

∑t
s=1(θ>xs −

ys)
2 −minθ′∈Rd

∑t−1
s=1(θ′>xs − ys)2, the additional loss suffered by the comparator from playing

t rounds instead of t − 1 rounds. We have ∆∗t ≥ 0 and L∗T =
∑t
t=1 ∆∗t . The regret of the game

with early stopping can be written asRT =
∑T
t=1

(∏t
s=1 es

) (
(yt − ŷt)2 −∆∗t

)
. One might notice

that δ∗t = 0 for the choice yt = θ∗t−1
>xt, where θ∗t−1 is the ordinary least squares solution on data

through time t− 1, and the regret always increases. However, this choice of yt may violate the label
constraints, in particular, for Bt = 1 and xt ∈ R increasing. Additionally, we want a constraint where
the adversary wants to play all remaining rounds, not just the next one, and hence the constraint on
yt will depend on the future covariates.

The value-to-go definition also needs to be adapted to the incremental setting. To this end, we define
the instantaneous value-to-go W (st, σ

2
t , t,x

T
1 ) by W (sT , σ

2
T , T,x

T
1 ) = 0 and

W (st−1, σ
2
t−1, t− 1,xT1 ) = max

et∈{0,1}
et

(
min
ŷt

max
yt

(ŷt − yt)2 −∆∗t +W (st, σ
2
t , t,x

T
1 )

)
,

where the statistics are updated as st = st−1 + ytxt and σ2
t = σ2

t−1 + y2
t . It is easy to check that

W0 is the minimax regret for this game and that it equals the regret of the fixed design game when
the adversary plays every round.

4.2 Calculating the Instantaneous Value-to-go
This section derives C as the condition where et = 1 for all t and evaluates Wt. Throughout,R(M)
denotes the row space of matrix M . Proofs from this section are heavy on calculation and have been
collected in Appendix B. We begin by explicitly calculating ∆∗t .
Lemma 4. The marginal loss for the comparator of playing another round with covariate x =
x‖ + x⊥, where x‖ ∈ R(Πt−1) and x⊥ is its orthogonal complement, is

∆∗t = y2
t

(
1− x>t Π†txt

)
− 2yts

>
t−1Π†txt +

(
s>t−1Π†txt

)2 x>t Π†t−1xt

x>t Π†txt
.

Theorem 4. Consider the fixed-design game with early stopping, with covariates xT1 . Define the Pt
by the backwards recursion (1) and define γt =

∑T
s=t+1B

2
sx
>
s Psxs. Suppose that, for all t, γt ≥

s>t

(
Π†t − Pt

)
st. Then the instantaneous value-to-go is W (st, σ

2
t , t,x

T
1 ) = s>t

(
Pt −Π†t

)
st+γt,

the adversary causes more regret by continuing the game, and the optimal learner strategy is (MMS).
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Proof outline. The proof is by induction, where the base case is easily established with
γT = 0 and PT = Π†T . Now, assuming that W (st, σ

2
t , t,x

T
1 ) = s>t

(
Pt −Π†t

)
st +

γt, we wish to calculate the t − 1 case by evaluating W (st−1, σ
2
t−1, t − 1,xT1 ) =

maxet∈{0,1} et
(
minŷt maxyt(ŷt − yt)2 −∆∗t +Wt(st, σ

2
t ,x

T
1 )
)
. We use our expression for ∆∗t ,

perform elementary calculations to evaluate the saddle-point, and show that the above evaluates to

max

{(
s>t−1Ptxt

)2
+B2

tx
>
t Ptxt −

(
s>t−1Π†txt

)2 x>t Π†t−1xt

x>t Π†txt
+ s>t−1

(
Pt −Π†t

)
st−1 + γt, 0

}
,

which can be shown to always take the first value so long as γt−1 ≥ s>t−1

(
Π†t−1 − Pt−1

)
st−1. In

this case, the induction hypothesis is verified with the Pt update described in the theorem. This
implies that the instantaneous value-to-go is always positive and that an optimal adversary will always
continue. As a consequence, the covariate sequence xT1 ∈ A(P †0 ), which confirms that (MMS) using
the forward recursion is minimax optimal via Theorem 2.

All the ingredients are in place to prove our main result. For convenience, define ABC(Σ, γ0) :=

{xT1 ∈ ABC(Σ, γ0) : PT = Π†T , γT = 0}, the set of sequences that deplete the Σ and γ0 budgets.
Roughly, we will argue that, under C(Σ, γ0), the adversary causes the most regret by playing
xT1 ∈ A(Σ), which implies that xT1 ∈ ABC(Σ, γ0) and the regret is γ0. The first step in the analysis
is to check that the constraint set is non-trivial.

Lemma 5. Consider the game defined by Σ � 0, γ0 ≥ ‖Bt‖∞ and a Bt sequence. If there exists

some T such that
∑T
t=1

B2
t

t+log(T+1) ≥ γ0, then there exists a covariate sequence xT1 ∈ ABC(Σ, γ0).
In particular, any Bt that are bounded below satisfy this condition.

In reasoning about optimal strategies, Theorem 4 allows us to easily establish conditions when the
learner is playing suboptimally and could be causing more regret. However, Theorem 4 applies to a
fixed design game that is allowed to stop early, and we wish to reason about the adversarial covariate
case. The next lemma makes the crucial connection.

Lemma 6. Suppose xt1 ∈ ABC(Σ, γ0) but γt > 0. Then there exists an extension xt+1, . . . ,xT
in ABC(Σ, γ0) with xT1 ∈ A(Σ, γ0) and W (st, σ

2
t , t,x

T
1 ) = s>t (Pt − Π†t)st + γt equal to the

instantaneous value-to-go.

The proof is a simple consequence of checking that the extension Lemma 2 is compatible with
condition C. We can now prove the minimax optimality of (MMS) on the ABC game.

Proof of Theorem 3. We will show something stronger: the optimal adversary strategy for the game
in Figure 1 plays an xT1 sequence in ABC and causes exactly γ0 regret against (MMS).

First, assume that the game stops before round T + 1 and x1, . . . ,xT have been played. There are
four possible scenarios depending on whether the Σ or γ0 budgets are exhausted.

Case: both budgets exhausted. In this case, xT1 ∈ ABC(Σ, γ0) and optimal holds by results from
Section 3.

Case: neither budget exhausted. We apply Lemma 2 to conclude that there exists a covariate
sequence xT+k

T+1 that uses up the Σ budget. The C(Σ, γ0) constraint guarantees that the adversary
can cause more regret by playing these rounds. Hence, an adversary that exhausts neither budget is
suboptimal.

Case: only Σ budget exhausted. Since Pt−Π†t � 0, we cannot exhaust the γ0 before the Σ budget
and still satisfy the C constraint.

Case: only γ0 budget exhausted. If the Σ budget is exhausted, then xT1 ∈ A and hence the minimax
regret is

∑T
t=1B

2
tx
>
t Ptxt by Theorem 2. Since γT = γ0−

∑T
t=1B

2
tx
>
t Ptxt, the adversary strategy

is suboptimal if γT > 0 since it is possible to cause γ0 regret. These arguments cover all four cases,
we can conclude that the adversary can cause at most γ0 regret and that any strategy that causes γ0

regret must exhaust the Σ and γ0 budgets.
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In all cases, the adversary can cause at most γ0 regret and it is necessary for the adversary to play
xT1 ∈ ABC(Σ, γ0), which implies that (MMS) is optimal. In other words, for xT1 ∈ X = ABC(Σ, γ0)
and yT1 ∈ Y = L(Bt), we have

sup
xT

1 ∈X ,yT1 ∈Y
RT ((MMS),xT1 , y

T
1 )−min

s
sup

xT
1 ∈X ,yT1 ∈Y

RT (s,xT1 , y
T
1 ) = 0

for all T > 0, which implies the result.

The Necessity of a γ0 Bound Requiring a γ0 bound may seem artificial at first, especially since
it translates directly into a bound on the regret. However, it is a reasonable constraint to impose,
for several reasons. First, recall that Lemma 3 argues that the regret of just the A(Σ) ∩ B(Σ)
game is infinite. Second, the restriction on the adversary is mild: if xT1 ∈ ABC(Σ, γ0), then
xT1 ∈ ABC(Σ, γ′) for γ′ ≥ γ0, and so the budget can be adjusted online. Finally, we emphasize that
the learner does not need to know γ0 to play (MMS).

5 Follow the Regularized Leader
The minimax strategy (MMS) can be interpreted as playing follow-the-regularized-leader with a
certain data-dependent regularizer.
Lemma 7. The minimax strategy (MMS) is exactly follow-the-regularized-leader, predicting ŷt =
θ>xt at round t, where regularization matrices Rt are

R0 := P−1
0 , and Rt := Rt−1 +

1

1 + x>t Ptxt
xtx

>
t − xt−1x

>
t−1, (9)

and θ is the solution to minθ
∑t−1
s=1(θ>xs − ys)2 + θ>Rtθ.

It is also possible to derive a Rt recursion without referring to Pt; see Lemma 11. For comparison,

the last step minimax algorithm [Azoury and Warmuth, 2001] plays ŷt =
(∑t

s=1 xsx
>
s

)−1

st−1,
so we can also view the minimax algorithm as last step minimax with a regularization of∑T
s=t+1

x>s Psxs

1+x>s Psxs
xsx

>
s .

We have shown that for the adversarial covariates protocol with X = ABC(Σ, γ0), (MMS) is the
minimax optimal strategy and receives γ0 regret. Our last result helps quantify this regret by proving
a O(log(T )) regret bound for the games analyzed in Section 3.
Theorem 5. For any fixed T and BT1 , the minimax regret of the box-constrained game has the bound

sup
xT

1 ∈A(Σ)

sup
yT1 ∈L(BT

1 )

RT (s∗,xT1 , y
T
1 ) ≤ d‖BT1 ‖∞

‖Σ‖2

(
1 + 2 ln

(
1 +

||Σ||22
2‖BT1 ‖2∞

||BT1 ||22
))

.

6 Conclusion

We have presented the minimax optimal strategy for online linear regression where the covariate
and label sequence are chosen adversarially and the measure of game length is a covariance budget
instead of the number of rounds. Because the strategy has access to a more informative measure of
game size, Σ, it can compete with strategies that know the number of rounds. The minimax strategy
is efficient and only needs to update Pt and st.

One could interpret the results of our paper as finding a more natural way to measure the length of the
game that admits a tractable minimax strategy. What other game protocols can be reparameterized to
admit efficient minimax strategies? As a general method, one could start with minimax algorithms
for constrained cases then search for parameterizations which preserve the optimality.

We have also provided an intuitive view of the algorithm as follow-the-regularized-leader with a
specific data-dependent regularizer. This interpretation can be used to bound the excess regret when
the budget Σ is misspecified, perhaps allowing for adaptation to Σ.
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